Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111431
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Protsenko, V. S. | en |
dc.contributor.author | Katanin, A. A. | en |
dc.date.accessioned | 2022-05-12T08:17:50Z | - |
dc.date.available | 2022-05-12T08:17:50Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Protsenko V. S. Magnetic, Charge, and Transport Properties of Graphene Nanoflakes / V. S. Protsenko, A. A. Katanin // Physical Review B. — 2021. — Vol. 104. — Iss. 24. — 245139. | en |
dc.identifier.issn | 2469-9950 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111431 | - |
dc.description.abstract | We investigate magnetic, charge, and transport properties of hexagonal graphene nanoflakes (GNFs) connected to two metallic leads by using the functional renormalization group method. The interplay between the on-site and long-range interactions leads to a competition of semimetal (SM), spin-density-wave (SDW), and charge-density-wave (CDW) phases. The ground-state phase diagrams are presented for the GNF systems with screened realistic long-range electron interaction [T. O. Wehling et al., Phys. Rev. Lett. 106, 236805 (2011)10.1103/PhysRevLett.106.236805], as well as uniformly screened long-range Coulomb potential ∝1/r. We demonstrate that the realistic screening of Coulomb interaction by σ bands causes moderate (strong) enhancement of critical long-range interaction strength, needed for the SDW (CDW) instability, compared to the results for the uniformly screened Coulomb potential. This enhancement gives rise to a wide region of stability of the SM phase for realistic interaction, such that freely suspended GNFs are far from both SM-SDW and SM-CDW phase-transition boundaries and correspond to the SM phase. Close relation between the linear conductance and the magnetic or charge states of the systems is discussed. A comparison of the results with those of other studies on GNF systems and infinite graphene sheets is presented. ©2021 American Physical Society. | en |
dc.description.sponsorship | The authors are grateful to A. Valli and M. Capone for stimulating discussions. The work was performed within the state assignment from the Ministry of Science and Higher Education of Russia (theme “Quant” AAAA-A18-118020190095-4) and partly supported by RFBR Grant No. 20-02-00252a. A.A.K. also acknowledges the financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-606). The calculations were performed on the Uran supercomputer at the IMM UB RAS. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en1 |
dc.publisher | American Physical Society (APS) | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Phys. Rev. B | 2 |
dc.source | Physical Review B | en |
dc.subject | CHARGE DENSITY WAVES | en |
dc.subject | DENSITY (OPTICAL) | en |
dc.subject | ELECTRIC FIELDS | en |
dc.subject | GRAPHENE | en |
dc.subject | GROUND STATE | en |
dc.subject | MAGNETISM | en |
dc.subject | PHASE DIAGRAMS | en |
dc.subject | SPIN DENSITY WAVES | en |
dc.subject | STATISTICAL MECHANICS | en |
dc.subject | TRANSPORT PROPERTIES | en |
dc.subject | ELECTRON'S INTERACTIONS | en |
dc.subject | FUNCTIONAL RENORMALIZATION GROUP | en |
dc.subject | GRAPHENE NANOFLAKE | en |
dc.subject | GROUND STATE PHASE DIAGRAM | en |
dc.subject | LONG RANGE INTERACTIONS | en |
dc.subject | LONGER-RANGE INTERACTION | en |
dc.subject | MAGNETIC CHARGES | en |
dc.subject | MAGNETIC TRANSPORT | en |
dc.subject | METALLIC LEADS | en |
dc.subject | RENORMALIZATION GROUP METHODS | en |
dc.subject | CHARGE DENSITY | en |
dc.title | Magnetic, Charge, and Transport Properties of Graphene Nanoflakes | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.identifier.rsi | 47548866 | - |
dc.identifier.doi | 10.1103/PhysRevB.104.245139 | - |
dc.identifier.scopus | 85122019322 | - |
local.contributor.employee | Protsenko, V.S., M. N. Mikheev, Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, S. Kovalevskaya Street 18, Yekaterinburg, 620990, Russian Federation, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation; Katanin, A.A., M. N. Mikheev, Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, S. Kovalevskaya Street 18, Yekaterinburg, 620990, Russian Federation, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation | en |
local.issue | 24 | - |
local.volume | 104 | - |
dc.identifier.wos | 000737276900011 | - |
local.contributor.department | M. N. Mikheev, Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, S. Kovalevskaya Street 18, Yekaterinburg, 620990, Russian Federation; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation | en |
local.identifier.pure | 29206862 | - |
local.description.order | 245139 | - |
local.identifier.eid | 2-s2.0-85122019322 | - |
local.fund.rffi | 20-02-00252 | - |
local.identifier.wos | WOS:000737276900011 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85122019322.pdf | 14,57 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.