Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111431
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorProtsenko, V. S.en
dc.contributor.authorKatanin, A. A.en
dc.date.accessioned2022-05-12T08:17:50Z-
dc.date.available2022-05-12T08:17:50Z-
dc.date.issued2021-
dc.identifier.citationProtsenko V. S. Magnetic, Charge, and Transport Properties of Graphene Nanoflakes / V. S. Protsenko, A. A. Katanin // Physical Review B. — 2021. — Vol. 104. — Iss. 24. — 245139.en
dc.identifier.issn2469-9950-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111431-
dc.description.abstractWe investigate magnetic, charge, and transport properties of hexagonal graphene nanoflakes (GNFs) connected to two metallic leads by using the functional renormalization group method. The interplay between the on-site and long-range interactions leads to a competition of semimetal (SM), spin-density-wave (SDW), and charge-density-wave (CDW) phases. The ground-state phase diagrams are presented for the GNF systems with screened realistic long-range electron interaction [T. O. Wehling et al., Phys. Rev. Lett. 106, 236805 (2011)10.1103/PhysRevLett.106.236805], as well as uniformly screened long-range Coulomb potential ∝1/r. We demonstrate that the realistic screening of Coulomb interaction by σ bands causes moderate (strong) enhancement of critical long-range interaction strength, needed for the SDW (CDW) instability, compared to the results for the uniformly screened Coulomb potential. This enhancement gives rise to a wide region of stability of the SM phase for realistic interaction, such that freely suspended GNFs are far from both SM-SDW and SM-CDW phase-transition boundaries and correspond to the SM phase. Close relation between the linear conductance and the magnetic or charge states of the systems is discussed. A comparison of the results with those of other studies on GNF systems and infinite graphene sheets is presented. ©2021 American Physical Society.en
dc.description.sponsorshipThe authors are grateful to A. Valli and M. Capone for stimulating discussions. The work was performed within the state assignment from the Ministry of Science and Higher Education of Russia (theme “Quant” AAAA-A18-118020190095-4) and partly supported by RFBR Grant No. 20-02-00252a. A.A.K. also acknowledges the financial support from the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2021-606). The calculations were performed on the Uran supercomputer at the IMM UB RAS.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen1
dc.publisherAmerican Physical Society (APS)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. B2
dc.sourcePhysical Review Ben
dc.subjectCHARGE DENSITY WAVESen
dc.subjectDENSITY (OPTICAL)en
dc.subjectELECTRIC FIELDSen
dc.subjectGRAPHENEen
dc.subjectGROUND STATEen
dc.subjectMAGNETISMen
dc.subjectPHASE DIAGRAMSen
dc.subjectSPIN DENSITY WAVESen
dc.subjectSTATISTICAL MECHANICSen
dc.subjectTRANSPORT PROPERTIESen
dc.subjectELECTRON'S INTERACTIONSen
dc.subjectFUNCTIONAL RENORMALIZATION GROUPen
dc.subjectGRAPHENE NANOFLAKEen
dc.subjectGROUND STATE PHASE DIAGRAMen
dc.subjectLONG RANGE INTERACTIONSen
dc.subjectLONGER-RANGE INTERACTIONen
dc.subjectMAGNETIC CHARGESen
dc.subjectMAGNETIC TRANSPORTen
dc.subjectMETALLIC LEADSen
dc.subjectRENORMALIZATION GROUP METHODSen
dc.subjectCHARGE DENSITYen
dc.titleMagnetic, Charge, and Transport Properties of Graphene Nanoflakesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.rsi47548866-
dc.identifier.doi10.1103/PhysRevB.104.245139-
dc.identifier.scopus85122019322-
local.contributor.employeeProtsenko, V.S., M. N. Mikheev, Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, S. Kovalevskaya Street 18, Yekaterinburg, 620990, Russian Federation, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation; Katanin, A.A., M. N. Mikheev, Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, S. Kovalevskaya Street 18, Yekaterinburg, 620990, Russian Federation, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federationen
local.issue24-
local.volume104-
dc.identifier.wos000737276900011-
local.contributor.departmentM. N. Mikheev, Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, S. Kovalevskaya Street 18, Yekaterinburg, 620990, Russian Federation; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federationen
local.identifier.pure29206862-
local.description.order245139-
local.identifier.eid2-s2.0-85122019322-
local.fund.rffi20-02-00252-
local.identifier.wosWOS:000737276900011-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85122019322.pdf14,57 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.