Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111428
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGomoyunov, M. I.en
dc.contributor.authorLukoyanov, N. Y.en
dc.contributor.authorPlaksin, A. R.en
dc.date.accessioned2022-05-12T08:17:46Z-
dc.date.available2022-05-12T08:17:46Z-
dc.date.issued2021-
dc.identifier.citationGomoyunov M. I. Path-Dependent Hamilton–Jacobi Equations: The Minimax Solutions Revised / M. I. Gomoyunov, N. Y. Lukoyanov, A. R. Plaksin. — DOI 10.1371/journal.pone.0258161 // Applied Mathematics and Optimization. — 2021. — Vol. 84. — P. 1087-1117.en
dc.identifier.issn0095-4616-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111428-
dc.description.abstractMotivated by optimal control problems and differential games for functional differential equations of retarded type, the paper deals with a Cauchy problem for a path-dependent Hamilton–Jacobi equation with a right-end boundary condition. Minimax solutions of this problem are studied. The existence and uniqueness result is obtained under assumptions that are weaker than those considered earlier. In contrast to previous works, on the one hand, we do not require any properties concerning positive homogeneity of the Hamiltonian in the impulse variable, and on the other hand, we suppose that the Hamiltonian satisfies a Lipshitz continuity condition with respect to the path variable in the uniform (supremum) norm. The progress is related to the fact that a suitable Lyapunov–Krasovskii functional is built that allows to prove a comparison principle. This functional is in some sense equivalent to the square of the uniform norm of the path variable and, at the same time, it possesses appropriate smoothness properties. In addition, the paper provides non-local and infinitesimal criteria of minimax solutions, their stability with respect to perturbations of the Hamiltonian and the boundary functional, as well as consistency of the approach with the non-path-dependent case. Connection of the problem statement under consideration with some other possible statements (regarding the choice of path spaces and derivatives used) known in the theory of path-dependent Hamilton–Jacobi equations is discussed. Some remarks concerning viscosity solutions of the studied Cauchy problem are given. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren1
dc.publisherSpringer Science and Business Media LLCen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAppl Math Optim2
dc.sourceApplied Mathematics and Optimizationen
dc.subjectCO-INVARIANT DERIVATIVESen
dc.subjectMINIMAX SOLUTIONSen
dc.subjectPATH-DEPENDENT HAMILTON–JACOBI EQUATIONSen
dc.subjectVISCOSITY SOLUTIONSen
dc.subjectBOUNDARY CONDITIONSen
dc.subjectOPTIMAL CONTROL SYSTEMSen
dc.subjectSTABILITY CRITERIAen
dc.subjectCOMPARISON PRINCIPLEen
dc.subjectCONTINUITY CONDITIONSen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectEXISTENCE AND UNIQUENESS RESULTSen
dc.subjectFUNCTIONAL DIFFERENTIAL EQUATIONSen
dc.subjectKRASOVSKII FUNCTIONALen
dc.subjectOPTIMAL CONTROL PROBLEMen
dc.subjectVISCOSITY SOLUTIONSen
dc.subjectHAMILTONIANSen
dc.titlePath-Dependent Hamilton–Jacobi Equations: The Minimax Solutions Reviseden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.rsi46841501-
dc.identifier.doi10.1007/s00245-021-09794-4-
dc.identifier.scopus85108605401-
local.contributor.employeeGomoyunov, M.I., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, Russian Federation, Ural Federal University, Mira Str., 19, Ekaterinburg, Russian Federation; Lukoyanov, N.Y., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, Russian Federation, Ural Federal University, Mira Str., 19, Ekaterinburg, Russian Federation; Plaksin, A.R., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, Russian Federation, Ural Federal University, Mira Str., 19, Ekaterinburg, Russian Federationen
local.description.firstpage1087-
local.description.lastpage1117-
local.volume84-
dc.identifier.wos000664814600001-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, Russian Federation; Ural Federal University, Mira Str., 19, Ekaterinburg, Russian Federationen
local.identifier.pure23717072-
local.identifier.eid2-s2.0-85108605401-
local.identifier.wosWOS:000664814600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85108605401.pdf303,86 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.