Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111400
Название: | Lattice Approximations of the First-Order Mean Field Type Differential Games |
Авторы: | Averboukh, Y. |
Дата публикации: | 2021 |
Издатель: | Birkhauser Springer Science and Business Media LLC |
Библиографическое описание: | Averboukh Y. Lattice Approximations of the First-Order Mean Field Type Differential Games / Y. Averboukh // Nonlinear Differential Equations and Applications. — 2021. — Vol. 28. — Iss. 6. — 65. |
Аннотация: | The theory of first-order mean field type differential games examines the systems of infinitely many identical agents interacting via some external media under assumption that each agent is controlled by two players. We study the approximations of the value function of the first-order mean field type differential game using solutions of model finite-dimensional differential games. The model game appears as a mean field type continuous-time Markov game, i.e., the game theoretical problem with the infinitely many agents and dynamics of each agent determined by a controlled finite state nonlinear Markov chain. Given a supersolution (resp. subsolution) of the Hamilton–Jacobi equation for the model game, we construct a suboptimal strategy of the first (resp. second) player and evaluate the approximation accuracy using the modulus of continuity of the reward function and the distance between the original and model games. This gives the approximations of the value function of the mean field type differential game by values of the finite-dimensional differential games. Furthermore, we present the way to build a finite-dimensional differential game that approximates the original game with a given accuracy. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
Ключевые слова: | APPROXIMATE SOLUTIONS EXTREMAL SHIFT RULE MEAN FIELD TYPE DIFFERENTIAL GAMES SUBOPTIMAL STRATEGIES VISCOSITY SOLUTIONS |
URI: | http://elar.urfu.ru/handle/10995/111400 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 47010659 |
Идентификатор SCOPUS: | 85115247982 |
Идентификатор WOS: | 000698437400001 |
Идентификатор PURE: | 23714244 |
ISSN: | 1021-9722 |
DOI: | 10.1007/s00030-021-00727-2 |
Сведения о поддержке: | This work was funded by the Russian Science Foundation (Project No. 17-11-01093). |
Карточка проекта РНФ: | 17-11-01093 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85115247982.pdf | 388,59 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.