Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111398
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKuně, J.en
dc.contributor.authorLukoyanov, A. V.en
dc.contributor.authorAnisimov, V. I.en
dc.contributor.authorScalettar, R. T.en
dc.contributor.authorPickett, W. E.en
dc.date.accessioned2022-05-12T08:17:30Z-
dc.date.available2022-05-12T08:17:30Z-
dc.date.issued2008-
dc.identifier.citationCollapse of Magnetic Moment Drives the Mott Transition in MnO / J. Kuně, A. V. Lukoyanov, V. I. Anisimov et al. // Nature Materials. — 2008. — Vol. 7. — Iss. 3. — P. 198-202.en
dc.identifier.issn1476-1122-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111398-
dc.description.abstractThe metal-insulator transition in correlated electron systems, where electron states transform from itinerant to localized, has been one of the central themes of condensed-matter physics for more than half a century. The persistence of this question has been a consequence both of the intricacy of the fundamental issues and the growing recognition of the complexities that arise in real materials, when strong repulsive interactions play the primary role. The initial concept of Mott was based on the relative importance of kinetic hopping (measured by the bandwidth) and onsite repulsion of electrons. Real materials, however, have many further degrees of freedom that, as is recently attracting note, give rise to a rich variety of scenarios for a Mott transition. Here, we report results for the classic correlated insulator MnO that reproduce a simultaneous moment collapse, volume collapse and metallization transition near the observed pressure, and identify the mechanism as collapse of the magnetic moment due to an increase of crystal-field splitting, rather than to variation in the bandwidth.en
dc.description.sponsorshipJ.K. gratefully acknowledges the Research Fellowship of the Alexander von Humboldt Foundation. We acknowledge numerous discussions with D. Vollhardt and A. K. McMahan, and useful interaction with K.-W. Lee during the latter stages of this work. This work was supported by SFB 484 of the Deutsche Forschungsgemeinschaft (J.K.), by the Russian Foundation for Basic Research under the grants RFFI-06-02-81017, RFFI-07-02-00041 (V.I.A. and A.V.L.) and the Dynasty Foundation (A.V.L.), by DOE grant No. DE-FG02-04ER46111 and by DOE Strategic Science Academic Alliance grant No. DE-FG01-06NA26204. This research was also encouraged and supported by the US Department of Energy’s Computational Materials Science Network (J.K., R.T.S. and W.E.P.). Correspondence and requests for materials should be addressed to J.K. Supplementary Information accompanies this paper on www.nature.com/naturematerials.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNature Publishing Groupen1
dc.publisherSpringer Science and Business Media LLCen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceNat. Mater.2
dc.sourceNature Materialsen
dc.subjectCONDENSED MATTER PHYSICSen
dc.subjectELECTRIC DIPOLE MOMENTSen
dc.subjectMANGANITESen
dc.subjectMETAL INSULATOR TRANSITIONen
dc.subjectMETALLIZINGen
dc.subjectCORRELATED ELECTRON SYSTEMSen
dc.subjectMOTT TRANSITIONSen
dc.subjectELECTRIC DRIVESen
dc.titleCollapse of Magnetic Moment Drives the Mott Transition in MnOen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.scopus39749090405-
local.contributor.employeeKuně, J., Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, Augsburg 86135, Germany, Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Praha 6, Czech Republic; Lukoyanov, A.V., Ural State Technical University-UPI, 620002 Yekaterinburg, Russian Federation; Anisimov, V.I., Institute of Metal Physics, Russian Academy of Sciences, Ural Division, 620041 Yekaterinburg, Russian Federation; Scalettar, R.T., Department of Physics, University of California Davis, Davis, CA 95616, United States; Pickett, W.E., Department of Physics, University of California Davis, Davis, CA 95616, United Statesen
local.description.firstpage198-
local.description.lastpage202-
local.issue3-
local.volume7-
dc.identifier.wos000253408300012-
local.contributor.departmentCenter for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, Augsburg 86135, Germany; Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Praha 6, Czech Republic; Ural State Technical University-UPI, 620002 Yekaterinburg, Russian Federation; Institute of Metal Physics, Russian Academy of Sciences, Ural Division, 620041 Yekaterinburg, Russian Federation; Department of Physics, University of California Davis, Davis, CA 95616, United Statesen
local.identifier.pure8264366-
local.identifier.eid2-s2.0-39749090405-
local.fund.rffi06-02-81017-
local.fund.rffi07-02-00041-
local.identifier.wosWOS:000253408300012-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-39749090405.pdf404,62 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.