Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111391
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorXiong, Y.en
dc.contributor.authorLin, Z.en
dc.contributor.authorMostarac, D.en
dc.contributor.authorMinevich, B.en
dc.contributor.authorPeng, Q.en
dc.contributor.authorZhu, G.en
dc.contributor.authorSánchez, P. A.en
dc.contributor.authorKantorovich, S.en
dc.contributor.authorKe, Y.en
dc.contributor.authorGang, O.en
dc.date.accessioned2022-05-12T08:17:23Z-
dc.date.available2022-05-12T08:17:23Z-
dc.date.issued2021-
dc.identifier.citationDivalent Multilinking Bonds Control Growth and Morphology of Nanopolymers / Y. Xiong, Z. Lin, D. Mostarac et al. — DOI 10.1089/zeb.2016.1415 // Nano Letters. — 2021. — Vol. 21. — Iss. 24. — P. 10547-10554.en
dc.identifier.issn1530-6984-
dc.identifier.otherAll Open Access, Hybrid Gold, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111391-
dc.description.abstractAssembly of nanoscale objects into linear architectures resembling molecular polymers is a basic organization resulting from divalent interactions. Such linear architectures occur for particles with two binding patches on opposite sides, known as Janus particles. However, unlike molecular systems where valence bonds can be envisioned as pointlike interactions nanoscale patches are often realized through multiple molecular linkages. The relationship between the characteristics of these linkages, the resulting interpatch connectivity, and assembly morphology is not well-explored. Here, we investigate assembly behavior of model divalent nanomonomers, DNA nanocuboid with tailorable multilinking bonds. Our study reveals that the characteristics of individual molecular linkages and their collective properties have a profound effect on nanomonomer reactivity and resulting morphologies. Beyond linear nanopolymers, a common signature of divalent nanomonomers, we observe an effective valence increase as linkages lengthened, leading to the nanopolymer bundling. The experimental findings are rationalized by molecular dynamics simulations. © 2021 The Authors. Published by American Chemical Society.en
dc.description.sponsorshipThis work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, grant DE-SC0008772. This research used resources of the Center for Functional Nanomaterials and National Synchrotron Light Source II, supported by U.S. DOE Office of Science Facilities at Brookhaven National Laboratory under Contract No. DE-SC0012704. This research used imaging facilities of Advanced Science Research Center at City University of New York. D.M., P.A.S., and S.K. acknowledge support from the Austrian Research Fund (FWF), Project P33748. S.K. was also supported by the Russian Science Foundation Grant 19-12-00209 for computational work. Computer simulations were performed at the Vienna Scientific Cluster (VSC4).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Chemical Societyen1
dc.publisherAmerican Chemical Society (ACS)en
dc.relationinfo:eu-repo/grantAgreement/RSF//19-12-00209en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceNano Lett.2
dc.sourceNano Lettersen
dc.subjectDNA NANOTECHNOLOGYen
dc.subjectPATCHY PARTICLESen
dc.subjectPHASE BEHAVIORen
dc.subjectPOLYMERIZATIONen
dc.subjectSELF-ASSEMBLYen
dc.subjectMOLECULAR DYNAMICSen
dc.subjectNANOTECHNOLOGYen
dc.subjectSELF ASSEMBLYen
dc.subjectDIVALENTSen
dc.subjectDNA NANOTECHNOLOGYen
dc.subjectJANUS PARTICLESen
dc.subjectMOLECULAR LINKAGESen
dc.subjectMOLECULAR POLYMERSen
dc.subjectMOLECULAR SYSTEMSen
dc.subjectNANO POLYMERSen
dc.subjectNANO-SCALE OBJECTSen
dc.subjectPATCHY PARTICLESen
dc.subjectPHASE BEHAVIORen
dc.subjectMORPHOLOGYen
dc.subjectDNAen
dc.subjectPOLYMERen
dc.subjectCHEMISTRYen
dc.subjectMOLECULAR DYNAMICSen
dc.subjectDNAen
dc.subjectMOLECULAR DYNAMICS SIMULATIONen
dc.subjectPOLYMERSen
dc.titleDivalent Multilinking Bonds Control Growth and Morphology of Nanopolymersen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1089/zeb.2016.1415-
dc.identifier.scopus85118127208-
local.contributor.employeeXiong, Y., Department of Chemical Engineering, Columbia University, New York, NY 10027, United States; Lin, Z., Department of Chemical Engineering, Columbia University, New York, NY 10027, United States; Mostarac, D., Computational and Soft Matter Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria, MMM Mathematics-Magnetism-Materials, Research Platform, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria; Minevich, B., Department of Chemical Engineering, Columbia University, New York, NY 10027, United States; Peng, Q., Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States; Zhu, G., Department of Chemical Engineering, Columbia University, New York, NY 10027, United States; Sánchez, P.A., Computational and Soft Matter Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria; Kantorovich, S., Computational and Soft Matter Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria, Department of Mathematical and Theoretical Physics, Institute of Mathematics and Natural Sciences, Ural Federal University, Ekaterinburg, 620026, Russian Federation, MMM Mathematics-Magnetism-Materials, Research Platform, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria; Ke, Y., Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, United States; Gang, O., Department of Chemical Engineering, Columbia University, New York, NY 10027, United States, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States, Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United Statesen
local.description.firstpage10547-
local.description.lastpage10554-
local.issue24-
local.volume21-
dc.identifier.wos000758046000053-
local.contributor.departmentDepartment of Chemical Engineering, Columbia University, New York, NY 10027, United States; Computational and Soft Matter Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria; Department of Mathematical and Theoretical Physics, Institute of Mathematics and Natural Sciences, Ural Federal University, Ekaterinburg, 620026, Russian Federation; MMM Mathematics-Magnetism-Materials, Research Platform, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, United States; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United Statesen
local.identifier.pure29377916-
local.identifier.eid2-s2.0-85118127208-
local.fund.rsf19-12-00209-
local.identifier.wosWOS:000758046000053-
local.identifier.pmid34647751-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85118127208.pdf4,59 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.