Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111379
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorUmmethala, R.en
dc.contributor.authorKaramched, P. S.en
dc.contributor.authorRathinavelu, S.en
dc.contributor.authorSingh, N.en
dc.contributor.authorAggarwal, A.en
dc.contributor.authorSun, K.en
dc.contributor.authorIvanov, E.en
dc.contributor.authorKollo, L.en
dc.contributor.authorOkulov, I.en
dc.contributor.authorEckert, J.en
dc.contributor.authorPrashanth, K. G.en
dc.date.accessioned2022-05-12T08:17:13Z-
dc.date.available2022-05-12T08:17:13Z-
dc.date.issued2020-
dc.identifier.citationSelective Laser Melting of High-strength, Low-modulus Ti–35Nb–7Zr–5Ta Alloy / R. Ummethala, P. S. Karamched, S. Rathinavelu et al. — DOI 10.2495/EPM200031 // Materialia. — 2020. — Vol. 14. — 100941.en
dc.identifier.issn2589-1529-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111379-
dc.description.abstractThe state-of-the-art alloys for load-bearing implant applications lack the necessary functional attributes and are largely a compromise between biocompatibility and mechanical properties. While commercial alloys pose long-term toxicity and detrimental stress shielding effects, the newly developed alloys are closing in on the gaps, however, falling short of the desired elastic modulus necessary to rule out stress shielding. In this work, we report the fabrication of a low modulus β-Ti alloy, Ti–35Nb–7Zr–5Ta (TNZT), by selective laser melting (SLM) with optimized laser parameters. The as-prepared SLM TNZT shows a high ultimate tensile strength (~630 MPa), excellent ductility (~15%) and a lower elastic modulus (~81 GPa) when compared to the state-of-the-art cp-Ti and Ti-based alloys. The mechanical performance of the as-printed TNZT alloy has been examined and is correlated to the microstructure (grain structure, phase constitution and dislocation density). It is proposed that a high density of GND (geometrically necessary dislocations), resulting from rapid cooling, in the as-prepared condition strengthens the alloy, whereas the single phase β-bcc crystal structure results in lowering the elastic modulus. High grain boundary area and a preferred crystal orientation of {200} planes within the bcc crystal lattices contribute to an additional drop in the elastic modulus of the alloy. It is shown that the TNZT alloy, processed by SLM, demonstrates the best combination of strength and modulus, illustrating its potential as a promising biomaterial of the future. © 2020.en
dc.description.sponsorshipThis work was supported by the European Regional Development Fund (ASTRA6-6, ASTRA35-6 and MOBERC15). The authors would like to thank Dr. Vitali Podgurski, Mr. Andrei Bogatov, Mr. Asad Alamgir Shaikh, Dr. Mart Viljus, Dr. Märt Kolnes, Mr. Rainer Traksmaa, Mr. Endel Esinurm and Ms. Laivi Väljaots for extending research facilities and helping to improve the research outcome with stimulating discussions.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en1
dc.publisherElsevier BVen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMater.2
dc.sourceMaterialiaen
dc.subjectBIOMATERIALSen
dc.subjectELASTIC MODULUSen
dc.subjectMICROSTRUCTURE EVOLUTIONen
dc.subjectSELECTIVE LASER MELTINGen
dc.subjectTI–35NB–7ZR–5TAen
dc.subjectBIOCOMPATIBILITYen
dc.subjectCRYSTAL ORIENTATIONen
dc.subjectELASTIC MODULIen
dc.subjectGRAIN BOUNDARIESen
dc.subjectHIGH STRENGTH ALLOYSen
dc.subjectMELTINGen
dc.subjectSELECTIVE LASER MELTINGen
dc.subjectSHIELDINGen
dc.subjectTENSILE STRENGTHen
dc.subjectTITANIUM METALLOGRAPHYen
dc.subjectCOMMERCIAL ALLOYSen
dc.subjectDISLOCATION DENSITIESen
dc.subjectFUNCTIONAL ATTRIBUTEen
dc.subjectGEOMETRICALLY NECESSARY DISLOCATIONSen
dc.subjectMECHANICAL PERFORMANCEen
dc.subjectPHASE CONSTITUTIONen
dc.subjectSELECTIVE LASER MELTING (SLM)en
dc.subjectULTIMATE TENSILE STRENGTHen
dc.subjectTITANIUM ALLOYSen
dc.titleSelective Laser Melting of High-strength, Low-modulus Ti–35Nb–7Zr–5Ta Alloyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.2495/EPM200031-
dc.identifier.scopus85094315675-
local.contributor.employeeUmmethala, R., Department of Metallurgical and Materials Engineering, National Institute of TechnologyAndhra Pradesh 534101, India; Karamched, P.S., Department of Materials, University of Oxford, Parks RoadOX1 3PH, United Kingdom; Rathinavelu, S., Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, 620015, India; Singh, N., Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia; Aggarwal, A., Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Sun, K., IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, Dresden, D-01171, Germany; Ivanov, E., Tosoh SMD Inc., Grove City, OH 43123, United States; Kollo, L., Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia; Okulov, I., Ural Federal University, Institute of Natural Sciences and Mathematics, Yekaterinburg, 620002, Russian Federation, Leibniz Institute for Materials Engineering - IWT, Badgasteiner Str. 3, Bremen, 28359, Germany; Eckert, J., Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, Leoben, A-8700, Austria, Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, Leoben, A-8700, Austria; Prashanth, K.G., Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia, Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, Leoben, A-8700, Austria, CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, Indiaen
local.volume14-
local.contributor.departmentDepartment of Metallurgical and Materials Engineering, National Institute of TechnologyAndhra Pradesh 534101, India; Department of Materials, University of Oxford, Parks RoadOX1 3PH, United Kingdom; Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, 620015, India; Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, Dresden, D-01171, Germany; Tosoh SMD Inc., Grove City, OH 43123, United States; Ural Federal University, Institute of Natural Sciences and Mathematics, Yekaterinburg, 620002, Russian Federation; Leibniz Institute for Materials Engineering - IWT, Badgasteiner Str. 3, Bremen, 28359, Germany; Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, Leoben, A-8700, Austria; Department of Materials Science, Chair of Materials Physics, Montanuniversität Leoben, Jahnstraße 12, Leoben, A-8700, Austria; CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, Indiaen
local.identifier.pure20119112-
local.description.order100941-
local.identifier.eid2-s2.0-85094315675-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85094315675.pdf2 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.