Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111364
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Petrova, E. A. | en |
dc.contributor.author | Shur, A. M. | en |
dc.date.accessioned | 2022-05-12T08:17:06Z | - |
dc.date.available | 2022-05-12T08:17:06Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Petrova E. A. Branching Frequency and Markov Entropy of Repetition-Free Languages / E. A. Petrova, A. M. Shur. — DOI 10.21638/spbu15.2021.308 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2021. — Vol. 12811 LNCS. — P. 328-341. | en |
dc.identifier.isbn | 9783030815073 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111364 | - |
dc.description.abstract | We define a new quantitative measure for an arbitrary factorial language: the entropy of a random walk in the prefix tree associated with the language; we call it Markov entropy. We relate Markov entropy to the growth rate of the language and the parameters of branching of its prefix tree. We show how to compute Markov entropy for a regular language. Finally, we develop a framework for experimental study of Markov entropy by modelling random walks and present the results of experiments with power-free and Abelian-power-free languages. © 2021, Springer Nature Switzerland AG. | en |
dc.description.sponsorship | Supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2021-1387). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en1 |
dc.publisher | Springer International Publishing | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Lect. Notes Comput. Sci. | 2 |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | ABELIAN-POWER-FREE LANGUAGE | en |
dc.subject | MARKOV ENTROPY | en |
dc.subject | POWER-FREE LANGUAGE | en |
dc.subject | PREFIX TREE | en |
dc.subject | RANDOM WALK | en |
dc.subject | ENTROPY | en |
dc.subject | FORESTRY | en |
dc.subject | RANDOM PROCESSES | en |
dc.subject | FACTORIAL LANGUAGES | en |
dc.subject | FREE LANGUAGES | en |
dc.subject | PREFIX TREES | en |
dc.subject | QUANTITATIVE MEASURES | en |
dc.subject | RANDOM WALK | en |
dc.subject | MODELING LANGUAGES | en |
dc.title | Branching Frequency and Markov Entropy of Repetition-Free Languages | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.conference.name | 25th International Conference on Developments in Language Theory, DLT 2021 | en |
dc.conference.date | 16 August 2021 through 20 August 2021 | - |
dc.identifier.rsi | 46995342 | - |
dc.identifier.doi | 10.1007/978-3-030-81508-0_27 | - |
dc.identifier.scopus | 85113192800 | - |
local.contributor.employee | Petrova, E.A., Ural Federal University, Ekaterinburg, Russian Federation; Shur, A.M., Ural Federal University, Ekaterinburg, Russian Federation | en |
local.description.firstpage | 328 | - |
local.description.lastpage | 341 | - |
local.volume | 12811 LNCS | - |
dc.identifier.wos | 000905608200027 | - |
local.contributor.department | Ural Federal University, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 22983763 | - |
local.identifier.eid | 2-s2.0-85113192800 | - |
local.identifier.wos | WOS:000905608200027 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85113192800.pdf | 467,54 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.