Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111354
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Azeef Muhammed, P. A. | en |
dc.contributor.author | Volkov, M. V. | en |
dc.date.accessioned | 2022-05-12T08:16:41Z | - |
dc.date.available | 2022-05-12T08:16:41Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Azeef Muhammed P. A. A Tale of Two Categories: Inductive Groupoids and Cross-connections / P. A. Azeef Muhammed, M. V. Volkov. — DOI 10.30759/1728-9718-2021-4(73)-173-182 // Journal of Pure and Applied Algebra. — 2022. — Vol. 226. — Iss. 7. — 106940. | en |
dc.identifier.issn | 0022-4049 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111354 | - |
dc.description.abstract | A groupoid is a small category in which all morphisms are isomorphisms. An inductive groupoid is a specialized groupoid whose object set is a regular biordered set and the morphisms admit a partial order. A normal category is a specialized small category whose object set is a strict preorder and the morphisms admit a factorization property. A pair of ‘related’ normal categories constitutes a cross-connection. Both inductive groupoids and cross-connections were identified by Nambooripad as categorical models of regular semigroups. We explore the inter-relationship between these seemingly different categorical structures and prove a direct category equivalence between the category of inductive groupoids and the category of cross-connections. © 2021 Elsevier B.V. | en |
dc.description.sponsorship | We acknowledge the financial support by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2021-1387 ). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en1 |
dc.publisher | Elsevier BV | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | J. Pure Appl. Algebra | 2 |
dc.source | Journal of Pure and Applied Algebra | en |
dc.subject | BIORDERED SET | en |
dc.subject | CROSS-CONNECTION | en |
dc.subject | INDUCTIVE GROUPOID | en |
dc.subject | NORMAL CATEGORY | en |
dc.subject | REGULAR SEMIGROUP | en |
dc.title | A Tale of Two Categories: Inductive Groupoids and Cross-connections | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.identifier.doi | 10.1016/j.jpaa.2021.106940 | - |
dc.identifier.scopus | 85119122040 | - |
local.contributor.employee | Azeef Muhammed, P.A., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation, Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia, School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; Volkov, M.V., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation | en |
local.issue | 7 | - |
local.volume | 226 | - |
dc.identifier.wos | 000780273400003 | - |
local.contributor.department | Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation; Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia | en |
local.identifier.pure | 29713859 | - |
local.description.order | 106940 | - |
local.identifier.eid | 2-s2.0-85119122040 | - |
local.identifier.wos | WOS:000780273400003 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85119122040.pdf | 433,91 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.