Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111343
Title: Structure of the Simple Harmonic-Repulsive System in Liquid and Glassy States Studied by the Triple Correlation Function
Authors: Levashov, V. A.
Ryltsev, R. E.
Chtchelkatchev, N. M.
Issue Date: 2021
Publisher: IOP Publishing Ltd
IOP Publishing
Citation: Levashov V. A. Structure of the Simple Harmonic-Repulsive System in Liquid and Glassy States Studied by the Triple Correlation Function / V. A. Levashov, R. E. Ryltsev, N. M. Chtchelkatchev. — DOI 10.21538/0134-4889-2020-26-1-131-140 // Journal of Physics Condensed Matter. — 2021. — Vol. 33. — Iss. 2. — 025403.
Abstract: An efficient description of the structures of liquids and, in particular, the structural changes that happen with liquids on supercooling remains to be a challenge. The systems composed of soft particles are especially interesting in this context because they often demonstrate non-trivial local orders that do not allow to introduce the concept of the nearest-neighbor shell. For this reason, the use of some methods, developed for the structure analysis of atomic liquids, is questionable for the soft-particle systems. Here we report about our investigations of the structure of the simple harmonic-repulsive liquid in 3D using the triple correlation function (TCF), i.e., the method that does not rely on the nearest neighbor concept. The liquid is considered at reduced pressure (P = 1.8) at which it exhibits remarkable stability against crystallization on cooling. It is demonstrated that the TCF allows addressing the development of the orientational correlations in the structures that do not allow drawing definite conclusions from the studies of the bond-orientational order parameters. Our results demonstrate that the orientational correlations, if measured by the heights of the peaks in the TCF, significantly increase on cooling. This rise in the orientational ordering is not captured properly by the Kirkwood's superposition approximation. Detailed considerations of the peaks' shapes in the TCF suggest the existence of a link between the orientational ordering and the slowdown of the system's dynamics. Our findings support the view that the development of the orientational correlations in liquids may play a significant role in the liquids' dynamics and that the considerations of the pair distribution function may not be sufficient to understand intuitively all the structural changes that happen with liquids on supercooling. In general, our results demonstrate that the considerations of the TCF are useful in the discussions of the liquid's structures beyond the pair density function and interpreting the results obtained with the bond-orientational order parameters. © 2020 IOP Publishing Ltd.
Keywords: DYNAMICS
GLASS TRANSITION
ORIENTATIONAL ORDER
SOFT MATTER
STRUCTURE
SUPERCOOLED LIQUIDS
TRIPLE CORRELATION FUNCTION
DISTRIBUTION FUNCTIONS
HARMONIC FUNCTIONS
SUPERCOOLING
BOND ORIENTATIONAL ORDER PARAMETERS
ORIENTATIONAL CORRELATIONS
ORIENTATIONAL ORDERINGS
PAIR DENSITY FUNCTIONS
PAIR DISTRIBUTION FUNCTIONS
STRUCTURE ANALYSIS
SUPERPOSITION APPROXIMATION
TRIPLE CORRELATION FUNCTIONS
LIQUIDS
ARTICLE
CONTROLLED STUDY
COOLING
CORRELATION FUNCTION
CRYSTALLIZATION
DRAWING
HUMAN
HUMAN EXPERIMENT
URI: http://hdl.handle.net/10995/111343
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85093706360
PURE ID: 20114663
ISSN: 0953-8984
DOI: 10.21538/0134-4889-2020-26-1-131-140
metadata.dc.description.sponsorship: This work was supported by the Russian Science Foundation (Grant 18-12-00438). We gratefully acknowledge access to the following computational resources: Supercomputing Center of Novosibirsk State University (http://nusc.nsu.ru), the federal collective usage center ‘Complex for Simulation and Data Processing for Mega-science Facilities’ at NRC ‘Kurchatov Institute’ (http://ckp.nrcki.ru/), supercomputers at Joint Supercomputer Center of Russian Academy of Sciences (http://jscc.ru), and ‘Uran’ supercomputer of IMM UB RAS (http://parallel.uran.ru).
RSCF project card: 18-12-00438
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85093706360.pdf8,63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.