Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111333
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Parikh, J. | en |
dc.contributor.author | Rumbell, T. | en |
dc.contributor.author | Butova, X. | en |
dc.contributor.author | Myachina, T. | en |
dc.contributor.author | Acero, J. C. | en |
dc.contributor.author | Khamzin, S. | en |
dc.contributor.author | Solovyova, O. | en |
dc.contributor.author | Kozloski, J. | en |
dc.contributor.author | Khokhlova, A. | en |
dc.contributor.author | Gurev, V. | en |
dc.date.accessioned | 2022-05-12T08:16:28Z | - |
dc.date.available | 2022-05-12T08:16:28Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Generative Adversarial Networks for Construction of Virtual Populations of Mechanistic Models: Simulations to Study Omecamtiv Mecarbil Action / J. Parikh, T. Rumbell, X. Butova et al. — DOI 10.21538/0134-4889-2020-26-3-275-285 // Journal of Pharmacokinetics and Pharmacodynamics. — 2022. — Vol. 49. — Iss. 1. — P. 51-64. | en |
dc.identifier.issn | 1567-567X | - |
dc.identifier.other | All Open Access, Hybrid Gold, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111333 | - |
dc.description.abstract | Biophysical models are increasingly used to gain mechanistic insights by fitting and reproducing experimental and clinical data. The inherent variability in the recorded datasets, however, presents a key challenge. In this study, we present a novel approach, which integrates mechanistic modeling and machine learning to analyze in vitro cardiac mechanics data and solve the inverse problem of model parameter inference. We designed a novel generative adversarial network (GAN) and employed it to construct virtual populations of cardiac ventricular myocyte models in order to study the action of Omecamtiv Mecarbil (OM), a positive cardiac inotrope. Populations of models were calibrated from mechanically unloaded myocyte shortening recordings obtained in experiments on rat myocytes in the presence and absence of OM. The GAN was able to infer model parameters while incorporating prior information about which model parameters OM targets. The generated populations of models reproduced variations in myocyte contraction recorded during in vitro experiments and provided improved understanding of OM’s mechanism of action. Inverse mapping of the experimental data using our approach suggests a novel action of OM, whereby it modifies interactions between myosin and tropomyosin proteins. To validate our approach, the inferred model parameters were used to replicate other in vitro experimental protocols, such as skinned preparations demonstrating an increase in calcium sensitivity and a decrease in the Hill coefficient of the force–calcium (F–Ca) curve under OM action. Our approach thereby facilitated the identification of the mechanistic underpinnings of experimental observations and the exploration of different hypotheses regarding variability in this complex biological system. © 2021, The Author(s). | en |
dc.description.sponsorship | This work was partially supported by the EU’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie (g.a. 764738) state Program (No. AAAA-A19-119070190064-4) and the research grant from RFBR (No. 19-31-90089). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer | en1 |
dc.publisher | Springer Science and Business Media LLC | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | J. Pharmacokinet. Pharmacodyn. | 2 |
dc.source | Journal of Pharmacokinetics and Pharmacodynamics | en |
dc.subject | BIOPHYSICAL MODELS | en |
dc.subject | GENERATIVE ADVERSARIAL NETWORKS | en |
dc.subject | OMECAMTIV MECARBIL | en |
dc.subject | PARAMETER INFERENCE | en |
dc.subject | POPULATIONS OF MODELS | en |
dc.title | Generative Adversarial Networks for Construction of Virtual Populations of Mechanistic Models: Simulations to Study Omecamtiv Mecarbil Action | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 47520416 | - |
dc.identifier.doi | 10.1007/s10928-021-09787-4 | - |
dc.identifier.scopus | 85118314674 | - |
local.contributor.employee | Parikh, J., IBM Research, Yorktown, NY, United States; Rumbell, T., IBM Research, Yorktown, NY, United States; Butova, X., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russian Federation; Myachina, T., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russian Federation; Acero, J.C., Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom; Khamzin, S., Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russian Federation; Solovyova, O., Ural Federal University, Yekaterinburg, Russian Federation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russian Federation; Kozloski, J., IBM Research, Yorktown, NY, United States; Khokhlova, A., Ural Federal University, Yekaterinburg, Russian Federation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russian Federation; Gurev, V., IBM Research, Yorktown, NY, United States | en |
local.description.firstpage | 51 | - |
local.description.lastpage | 64 | - |
local.issue | 1 | - |
local.volume | 49 | - |
dc.identifier.wos | 000712722900001 | - |
local.contributor.department | IBM Research, Yorktown, NY, United States; Ural Federal University, Yekaterinburg, Russian Federation; Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russian Federation; Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom | en |
local.identifier.pure | 29615496 | - |
local.identifier.eid | 2-s2.0-85118314674 | - |
local.fund.cordis | H2020: 764738 | - |
local.fund.rffi | 19-31-90089 | - |
local.identifier.wos | WOS:000712722900001 | - |
local.identifier.pmid | 34716531 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85118314674.pdf | 7,83 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.