Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111329
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNovikau, I. S.en
dc.contributor.authorNovak, E. V.en
dc.contributor.authorPyanzina, E. S.en
dc.contributor.authorKantorovich, S. S.en
dc.date.accessioned2022-05-12T08:16:23Z-
dc.date.available2022-05-12T08:16:23Z-
dc.date.issued2022-
dc.identifier.citationBehaviour of a Magnetic Nanogel in a Shear Flow / I. S. Novikau, E. V. Novak, E. S. Pyanzina et al. — DOI 10.21538/0134-4889-2020-26-4-7-31 // Journal of Molecular Liquids. — 2022. — Vol. 346. — 118056.en
dc.identifier.issn0167-7322-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111329-
dc.description.abstractMagnetic nanogels (MNG) – soft colloids made of polymer matrix with embedded in it magnetic nanoparticles (MNPs) – are promising magneto-controllable drug carriers. In order to develop this potential, one needs to clearly understand the relationship between nanogel magnetic properties and its behaviour in a hydrodynamic flow. Considering the size of the MNG and typical time and velocity scales involved in their nanofluidics, experimental characterisation of the system is challenging. In this work, we perform molecular dynamics (MD) simulations combined with the Lattice-Boltzmann (LB) scheme aiming at describing the impact of the shear rate (γ̇) on the shape, magnetic structure and motion of an MNG. We find that in a shear flow the centre of mass of an MNG tends to be in the centre of a channel and to move preserving the distance to both walls. The MNG monomers along with translation are involved in two more types of motion, they rotate around the centre of mass and oscillate with respect to the latter. It results in synchronised tumbling and wobbling of the whole MNG accompanied by its volume oscillates. The fact the an MNG is a highly compressible and permeable for the carrier liquid object makes its behaviour different from that predicted by classical Taylor-type models. We show that the frequency of volume oscillations and rotations are identical and are growing function of the shear rate. We find that the stronger magnetic interactions in the MNG are, the higher is the frequency of this complex oscillatory motion, and the lower is its amplitude. Finally, we show that the oscillations of the volume lead to the periodic changes in MNG magnetic energy. © 2021 Elsevier B.V.en
dc.description.sponsorshipThis research has been supported by the Russian Science Foundation Grant No.19-12-00209. Computer simulations were performed at the Vienna Scientific Cluster (VSC). I.S.N. and S.S.K. are grateful to Vienna Doctoral School Physics, Doctoral College DCAMF and were partially supported by FWF Project SAM P 33748. The authors thank Pedro S. Sánchez and Dr. Rudolf Weeber for fruitful discussions and useful recommendations.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en1
dc.publisherElsevier BVen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-12-00209en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ Mol Liq2
dc.sourceJournal of Molecular Liquidsen
dc.subjectLATTICE-BOLTZMANNen
dc.subjectMAGNETIC NANOGELen
dc.subjectMOLECULAR DYNAMICSen
dc.subjectSHEAR FLOWen
dc.subjectDRUG DELIVERYen
dc.subjectNANOFLUIDICSen
dc.subjectNANOMAGNETICSen
dc.subjectNANOSTRUCTURED MATERIALSen
dc.subjectSHEAR DEFORMATIONen
dc.subjectCENTERS-OF-MASSen
dc.subjectHYDRODYNAMIC FLOWSen
dc.subjectNANOGELSen
dc.subjectPOLYMER MATRICESen
dc.subjectSHEAR-RATEen
dc.subjectSOFT COLLOIDSen
dc.subjectTIME-SCALESen
dc.subjectVELOCITY SCALEen
dc.titleBehaviour of a Magnetic Nanogel in a Shear Flowen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1016/j.molliq.2021.118056-
dc.identifier.scopus85121103474-
local.contributor.employeeNovikau, I.S., Faculty of Physics, University of Vienna, Kollingasse 14-16, Vienna, 1090, Austria; Novak, E.V., Institute of Mathematics and Natural Sciences, Ural Federal University, Lenin av. 51, Ekaterinburg, 620000, Russian Federation; Pyanzina, E.S., Institute of Mathematics and Natural Sciences, Ural Federal University, Lenin av. 51, Ekaterinburg, 620000, Russian Federation; Kantorovich, S.S., Faculty of Physics, University of Vienna, Kollingasse 14-16, Vienna, 1090, Austria, Institute of Mathematics and Natural Sciences, Ural Federal University, Lenin av. 51, Ekaterinburg, 620000, Russian Federation, Research Platform MMM Mathematics-Magnetism-Material, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austriaen
local.volume346-
dc.identifier.wos000754633100005-
local.contributor.departmentFaculty of Physics, University of Vienna, Kollingasse 14-16, Vienna, 1090, Austria; Institute of Mathematics and Natural Sciences, Ural Federal University, Lenin av. 51, Ekaterinburg, 620000, Russian Federation; Research Platform MMM Mathematics-Magnetism-Material, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austriaen
local.identifier.pure29142306-
local.description.order118056-
local.identifier.eid2-s2.0-85121103474-
local.fund.rsf19-12-00209-
local.identifier.wosWOS:000754633100005-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85121103474.pdf8,81 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.