Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111327
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorRyltsev, R. E.en
dc.contributor.authorChtchelkatchev, N. M.en
dc.date.accessioned2022-05-12T08:16:17Z-
dc.date.available2022-05-12T08:16:17Z-
dc.date.issued2022-
dc.identifier.citationRyltsev R. E. Deep Machine Learning Potentials for Multicomponent Metallic Melts: Development, Predictability and Compositional Transferability / R. E. Ryltsev, N. M. Chtchelkatchev. — DOI 10.21538/0134-4889-2020-26-4-255-267 // Journal of Molecular Liquids. — 2022. — Vol. 349. — 118181.en
dc.identifier.issn0167-7322-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111327-
dc.description.abstractThe use of machine learning interatomic potentials (MLIPs) in simulations of materials is a state-of-the-art approach, which allows achieving nearly ab initio accuracy with orders of magnitude less computational cost. Multicomponent disordered systems have a highly complicated potential energy surface due to both topological and compositional disorder. That arises issues in MLIPs developing, such as optimal design strategy of potentials and their predictability and transferability. Here we address MLIPs for multicomponent metallic melts taking the ternary Al-Cu-Ni ones as a convenient example. We use many-body deep machine learning potentials as implemented in the DeePMD-kit to build MLIP that allows describing both atomic structure and dynamics of the system in the whole composition range. Doing that we consider different sets of neural networks hyperparameters and learning schemes to create an optimal MLIP, which allows archiving good accuracy in comparison with both ab initio and experimental data. We find that developed MLIP demonstrates good compositional transferability, which extends far beyond compositional fluctuations in the training configurations. The results obtained open up prospects for simulating structural and dynamical properties of multicomponent metallic alloys with MLIPs. © 2021 Elsevier B.V.en
dc.description.sponsorshipThis work was supported by the Russian Science Foundation (grant 18–12-00438). Processing of experimental data was supported by the RSF grant 19-73-20053. The numerical calculations are carried out using computing resources of the federal collective usage center ’Complex for Simulation and Data Processing for Mega-science Facilities’ at NRC ’Kurchatov Institute’ (ckp.nrcki.ru/), supercomputers at Joint Supercomputer Center of Russian Academy of Sciences (www.jscc.ru), HybriLIT heterogeneous computing platform (LIT, JINR) (http://hlit.jinr.ru) and ’Uran’ supercomputer of IMM UB RAS (parallel.uran.ru).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en1
dc.publisherElsevier BVen
dc.relationinfo:eu-repo/grantAgreement/RSF//18-12-00438en
dc.relationinfo:eu-repo/grantAgreement/RSF//19-73-20053en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ Mol Liq2
dc.sourceJournal of Molecular Liquidsen
dc.subjectAB INITIO SIMULATIONSen
dc.subjectAL-CU-NI ALLOYSen
dc.subjectMACHINE LEARNING POTENTIALen
dc.subjectMOLECULAR DYNAMICSen
dc.subjectMULTICOMPONENT MELTSen
dc.subjectNEURAL NETWORKSen
dc.subjectALUMINUM ALLOYSen
dc.subjectCOPPER ALLOYSen
dc.subjectDEEP NEURAL NETWORKSen
dc.subjectNICKEL ALLOYSen
dc.subjectPOTENTIAL ENERGYen
dc.subjectQUANTUM CHEMISTRYen
dc.subjectTERNARY ALLOYSen
dc.subjectAB INITIOen
dc.subjectINTERATOMIC POTENTIALen
dc.subjectLEARNING POTENTIALen
dc.subjectMETALLIC MELTSen
dc.subjectMULTICOMPONENTSen
dc.subjectSTATE-OF-THE-ART APPROACHen
dc.titleDeep Machine Learning Potentials for Multicomponent Metallic Melts: Development, Predictability and Compositional Transferabilityen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.rsi47542600-
dc.identifier.doi10.1016/j.molliq.2021.118181-
dc.identifier.scopus85120779396-
local.contributor.employeeRyltsev, R.E., Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russian Federation, Ural Federal University, Ekaterinburg, 620002, Russian Federation, Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow 108840, Russian Federation; Chtchelkatchev, N.M., Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow 108840, Russian Federationen
local.volume349-
dc.identifier.wos000754637300003-
local.contributor.departmentInstitute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russian Federation; Ural Federal University, Ekaterinburg, 620002, Russian Federation; Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow 108840, Russian Federationen
local.identifier.pure29558196-
local.description.order118181-
local.identifier.eid2-s2.0-85120779396-
local.fund.rsf18-12-00438-
local.fund.rsf19-73-20053-
local.identifier.wosWOS:000754637300003-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85120779396.pdf1,01 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.