Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111321
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMoskvin, A. S.en
dc.contributor.authorPanov, Y. D.en
dc.date.accessioned2022-05-12T08:16:08Z-
dc.date.available2022-05-12T08:16:08Z-
dc.date.issued2022-
dc.identifier.citationMoskvin A. S. Model of Charge Triplets for High-Tc Cuprates / A. S. Moskvin, Y. D. Panov. — DOI 10.1016/S1003-6326(21)65721-7 // Journal of Magnetism and Magnetic Materials. — 2022. — Vol. 550. — 169004.en
dc.identifier.issn0304-8853-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111321-
dc.description.abstractStarting with a minimal model for the CuO2 planes with the on-site Hilbert space reduced to a charge triplet of the three effective valence centers [CuO4]7−,6−,5− (nominally Cu1+,2+,3+) with different conventional spin, different orbital symmetry, and different local lattice configuration, we develop a unified non-BCS spin–pseudospin model to describe the main phase states of doped cuprates. We argue that antiferromagnetic insulating, charge ordered, superconducting, and Fermi-liquid phases are possible phase states of a model parent cuprate, while typical phase state of a doped cuprate, in particular mysterious pseudogap phase, is a result of a phase separation. Superconductivity of cuprates is not a consequence of pairing of doped holes, but the result of quantum transport of on-site composite hole bosons, whereas main peculiarities of normal state can be related to an electron–hole interplay for unusual Fermi-liquid phase and features of the phase separation. Puzzlingly, but it is the electron–lattice interaction, which in the BCS model determines s-wave pairing, in the model of local composite bosons gives dx2−y2-symmetry of the superconducting order parameter, thus showing once again a substantial involvement of the lattice in the cuprate's HTSC. © 2022 Elsevier B.V.en
dc.description.sponsorshipThis research was supported by the Ministry of Education and Science of Russian Federation, project No FEUZ-2020-0054.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en1
dc.publisherElsevier BVen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ Magn Magn Mater2
dc.sourceJournal of Magnetism and Magnetic Materialsen
dc.subjectCHARGE TRIPLETSen
dc.subjectCOMPOSITE BOSONen
dc.subjectHTSC CUPRATESen
dc.subjectPHASE SEPARATIONen
dc.subjectPSEUDOSPINen
dc.subjectBOSONSen
dc.subjectCOPPER OXIDESen
dc.subjectFERMI LIQUIDSen
dc.subjectFERMIONSen
dc.subjectQUANTUM CHEMISTRYen
dc.subjectSHEAR WAVESen
dc.subjectCHARGE TRIPLETen
dc.subjectCOMPOSITE BOSONSen
dc.subjectCUPRATESen
dc.subjectDOPED HIGH T Cen
dc.subjectLIQUID PHASEen
dc.subjectLIQUID PHASISen
dc.subjectPHASE STATEen
dc.titleModel of Charge Triplets for High-Tc Cupratesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1016/S1003-6326(21)65721-7-
dc.identifier.scopus85123695585-
local.contributor.employeeMoskvin, A.S., Ural Federal University, Ekaterinburg, 620083, Russian Federation, Institute of Metal Physics UB RAS, Ekaterinburg, 620108, Russian Federation; Panov, Y.D., Ural Federal University, Ekaterinburg, 620083, Russian Federationen
local.volume550-
dc.identifier.wos000777230200001-
local.contributor.departmentUral Federal University, Ekaterinburg, 620083, Russian Federation; Institute of Metal Physics UB RAS, Ekaterinburg, 620108, Russian Federationen
local.identifier.pure29556274-
local.description.order169004-
local.identifier.eid2-s2.0-85123695585-
local.identifier.wosWOS:000777230200001-
local.fund.feuzFEUZ-2020-0054-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85123695585.pdf239,47 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.