Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111293
Название: Turbine Diagnostics: Algorithms Adaptation Problems
Авторы: Murmanskii, I. B.
Aronson, K. E.
Murmansky, B. E.
Zhelonkin, N. V.
Brodov, Y. M.
Дата публикации: 2020
Издатель: WITPress
WIT Press
Библиографическое описание: Turbine Diagnostics: Algorithms Adaptation Problems / I. B. Murmanskii, K. E. Aronson, B. E. Murmansky et al. // WIT Transactions on Ecology and the Environment. — 2020. — Vol. 246. — P. 19-27.
Аннотация: Enterprises of energy equipment and operational utilities set sights on diagnostic systems. This is necessary for state control and maintenance planning of steam turbines. It is useful for digitalization purposes too. So far, some mathematical systems are already used. Algorithms for flow part, heat expansion systems, control systems, vibration-based diagnostics and auxiliary equipment have already been designed. We have designed algorithms just in principle. We met difficulties adapting them for the PT-75/80-90 turbine. Firstly, we should connect them to a single interface. Secondly, adaptation should include features of the equipment, its state (if not new), even operating conditions. Diagnostic signs for each turbine are the most important. We define them based on the operational data. When adapting the algorithms, we reconsider the signs list. We also estimate its coefficients of importance again. This requires experts to study designs, calculations, and modelling. We also analyzed a large amount of operational data at various power plants. To define the state we use tests. Adapting is based on the modes of a specific power station. Following this strategy, we adapt general algorithms for various turbines. © 2020 WIT Press.
Ключевые слова: ALGORITHMS ADAPTING
BIG DATA
DIAGNOSTIC SYSTEM
DIGITALIZATION
MAINTENANCE
MONITORING
POWER PLANT
STATE CONTROL
STEAM TURBINE
VIBRATIONBASED DIAGNOSTICS
URI: http://elar.urfu.ru/handle/10995/111293
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85103762290
Идентификатор PURE: 21172822
ISSN: 1746-448X
DOI: 10.2495/EPM200031
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85103762290.pdf667,74 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.