Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111258
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chentsov, A. G. | en |
dc.date.accessioned | 2022-05-12T08:15:27Z | - |
dc.date.available | 2022-05-12T08:15:27Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Chentsov A. G. Ultrafilters and Maximal Linked Systems / A. G. Chentsov // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 1. — P. 274-292. | en |
dc.identifier.issn | 0134-4889 | - |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111258 | - |
dc.description.abstract | The structure of ultrafilters of a broadly understood measurable space and of maximal linked systems defined on this space is studied. Bitopological spaces of ultrafilters and maximal linked spaces obtained in both cases by equipping the space with topologies of Wallman and Stone types are considered; the bitopological space of ultrafilters can be considered as a subspace of the bitopological space whose points are maximal linked systems. For an abstract attainability problem with constraints of asymptotic nature, ultrafilters can be used as generalized elements in extension constructions; for the latter case, we present a new implementation that involves the application of linked families of subsets of the set of ordinary solutions in the construction of constraints of asymptotic nature. A natural generalization of the usual "linkedness" is considered, when it is postulated that the intersection of sets of subfamilies of the original family defining the measurable space of cardinality not exceeding a given positive integer is nonempty. For this case, we establish relations connecting ultrafilters and maximal linked systems considered in the specified generalized sense. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved. | en |
dc.description.sponsorship | This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00410). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en1 |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics UB RAS | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Tr. Inst. Mat. Meh. UrO RAN | 2 |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | BITOPOLOGICAL SPACE | en |
dc.subject | MAXIMAL LINKED SYSTEM | en |
dc.subject | TOPOLOGY | en |
dc.subject | ULTRAFILTER | en |
dc.title | Ultrafilters and Maximal Linked Systems | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 42492209 | - |
dc.identifier.doi | 10.21538/0134-4889-2020-26-1-274-292 | - |
dc.identifier.scopus | 85090536732 | - |
local.contributor.employee | Chentsov, A.G., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620083, Russian Federation | en |
local.description.firstpage | 274 | - |
local.description.lastpage | 292 | - |
local.issue | 1 | - |
local.volume | 26 | - |
dc.identifier.wos | 000544884900020 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation; Ural Federal University, Yekaterinburg, 620083, Russian Federation | en |
local.identifier.pure | 12459282 | - |
local.identifier.eid | 2-s2.0-85090536732 | - |
local.fund.rffi | 18-01-00410 | - |
local.identifier.wos | WOS:000544884900020 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85090536732.pdf | 213,91 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.