Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111245
Title: Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives
Other Titles: Минимаксные решения однородных уравнений Гамильтона — Якоби с коинвариантными производными дробного порядка
Authors: Gomoyunov, M. I.
Issue Date: 2020
Publisher: Krasovskii Institute of Mathematics and Mechanics
Krasovskii Institute of Mathematics and Mechanics UB RAS
Citation: Gomoyunov M. I. Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives [Минимаксные решения однородных уравнений Гамильтона — Якоби с коинвариантными производными дробного порядка] / M. I. Gomoyunov // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 106-125.
Abstract: The Cauchy problem is considered for a homogeneous Hamilton–Jacobi equation with fractional-order coinvariant derivatives, which arises in problems of dynamical optimization of systems described by differential equations with Caputo fractional derivatives. A generalized solution of the problem in the minimax sense is defined. It is proved that such a solution exists, is unique, depends continuously on the parameters of the problem, and is consistent with the classical solution. An infinitesimal criterion of the minimax solution is obtained in the form of a pair of differential inequalities for suitable directional derivatives. An illustrative example is given. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved.
Keywords: COINVARIANT DERIVATIVES
FRACTIONAL-ORDER DERIVATIVES
GENERALIZED SOLUTIONS
HAMILTON–JACOBI EQUATIONS
URI: http://hdl.handle.net/10995/111245
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85103631012
PURE ID: 20231191
ISSN: 0134-4889
metadata.dc.description.sponsorship: This work was supported by RSF (project no. 19-71-00073).
RSCF project card: 19-71-00073
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85103631012.pdf300,94 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.