Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111241
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Pleshcheva, E. A. | en |
dc.date.accessioned | 2022-05-12T08:15:19Z | - |
dc.date.available | 2022-05-12T08:15:19Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Pleshcheva E. A. Interpolating Orthogonal Bases of an MRA and Wavelets [Интерполяционно-ортогональные базисы КМА и всплесков] / E. A. Pleshcheva // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 224-233. | en |
dc.identifier.issn | 0134-4889 | - |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111241 | - |
dc.description.abstract | The main goal of this paper is to construct orthonormal bases of a multiresolution analysis (MRA) that are interpolating on the grid k/2j. We consider an orthonormal MRA and the corresponding wavelets. Based on this MRA and using orthogonal masks of the scaling functions, we construct new masks of scaling functions that satisfy the interpolation condition. In I. Daubechies’s book it is proved that bases of an MRA that are interpolating and orthogonal simultaneously cannot have a compact support. In 2008, Yu.N. Subbotin and N.I. Chernykh suggested a method for modifying the Meyer scaling function in such a way that the basis formed by it is simultaneously orthogonal and interpolating. In the present paper we propose a method for modifying a wider class of scaling functions in such a way that the new scaling functions remain orthogonal and at the same time become interpolating. We start the construction with a mask of a scaling function and find necessary and sufficient conditions for the shifts of the scaling function obtained with the use of the modified mask to form an interpolating orthogonal system. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved. | en |
dc.description.sponsorship | This study is a part of the research carried out at the Ural Mathematical Center. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en1 |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics UB RAS | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Tr. Inst. Mat. Meh. UrO RAN | 2 |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | BASIS | en |
dc.subject | INTERPOLATING WAVELET | en |
dc.subject | MASK OF SCALING FUNCTION | en |
dc.subject | MULTIRESOLUTION ANALYSIS | en |
dc.subject | ORTHOGONAL WAVELET | en |
dc.subject | SCALING FUNCTION | en |
dc.title | Interpolating Orthogonal Bases of an MRA and Wavelets | en |
dc.title.alternative | Интерполяционно-ортогональные базисы КМА и всплесков | ru |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 44314670 | - |
dc.identifier.doi | 10.21538/0134-4889-2020-26-4-224-233 | - |
dc.identifier.scopus | 85103663260 | - |
local.contributor.employee | Pleshcheva, E.A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federation | en |
local.description.firstpage | 224 | - |
local.description.lastpage | 233 | - |
local.issue | 4 | - |
local.volume | 26 | - |
dc.identifier.wos | 000609903100015 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation; Ural Federal University, Yekaterinburg, 620000, Russian Federation | en |
local.identifier.pure | 20231358 | - |
local.identifier.eid | 2-s2.0-85103663260 | - |
local.identifier.wos | WOS:000609903100015 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85103663260.pdf | 200,67 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.