Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111241
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPleshcheva, E. A.en
dc.date.accessioned2022-05-12T08:15:19Z-
dc.date.available2022-05-12T08:15:19Z-
dc.date.issued2020-
dc.identifier.citationPleshcheva E. A. Interpolating Orthogonal Bases of an MRA and Wavelets [Интерполяционно-ортогональные базисы КМА и всплесков] / E. A. Pleshcheva // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 224-233.en
dc.identifier.issn0134-4889-
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.urihttp://hdl.handle.net/10995/111241-
dc.description.abstractThe main goal of this paper is to construct orthonormal bases of a multiresolution analysis (MRA) that are interpolating on the grid k/2j. We consider an orthonormal MRA and the corresponding wavelets. Based on this MRA and using orthogonal masks of the scaling functions, we construct new masks of scaling functions that satisfy the interpolation condition. In I. Daubechies’s book it is proved that bases of an MRA that are interpolating and orthogonal simultaneously cannot have a compact support. In 2008, Yu.N. Subbotin and N.I. Chernykh suggested a method for modifying the Meyer scaling function in such a way that the basis formed by it is simultaneously orthogonal and interpolating. In the present paper we propose a method for modifying a wider class of scaling functions in such a way that the new scaling functions remain orthogonal and at the same time become interpolating. We start the construction with a mask of a scaling function and find necessary and sufficient conditions for the shifts of the scaling function obtained with the use of the modified mask to form an interpolating orthogonal system. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved.en
dc.description.sponsorshipThis study is a part of the research carried out at the Ural Mathematical Center.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen1
dc.publisherKrasovskii Institute of Mathematics and Mechanics UB RASen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTr. Inst. Mat. Meh. UrO RAN2
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectBASISen
dc.subjectINTERPOLATING WAVELETen
dc.subjectMASK OF SCALING FUNCTIONen
dc.subjectMULTIRESOLUTION ANALYSISen
dc.subjectORTHOGONAL WAVELETen
dc.subjectSCALING FUNCTIONen
dc.titleInterpolating Orthogonal Bases of an MRA and Waveletsen
dc.title.alternativeИнтерполяционно-ортогональные базисы КМА и всплесковru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.scopus85103663260-
local.contributor.employeePleshcheva, E.A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federationen
local.description.firstpage224-
local.description.lastpage233-
local.issue4-
local.volume26-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation; Ural Federal University, Yekaterinburg, 620000, Russian Federationen
local.identifier.pure20231358-
local.identifier.eid2-s2.0-85103663260-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85103663260.pdf200,67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.