Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111240
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorYamkovoi, D. A.en
dc.date.accessioned2022-05-12T08:15:18Z-
dc.date.available2022-05-12T08:15:18Z-
dc.date.issued2020-
dc.identifier.citationYamkovoi D. A. Harmonic Interpolating Wavelets in the Neumann Boundary Value Problem in a Ring [Гармонические интерполяционные всплески в краевой задаче Неймана в кольце] / D. A. Yamkovoi // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 279-289.en
dc.identifier.issn0134-4889-
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111240-
dc.description.abstractWe consider the Neumann boundary value problem with continuous boundary values in a centrally symmetric ring with unit outer radius. The approach to solving the problem is based on expanding the continuous boundary values in interpolating and interpolating orthogonal 2π-periodic wavelets consisting of trigonometric polynomials. The idea for such an expansion and the scheme of interpolating and interpolating orthogonal 2π-periodic wavelets based on Meyer-type wavelets were proposed by Yu.N. Subbotin and N.I. Chernykh. It is convenient to use these series due to the fact that they are easily extended to polynomials harmonic in a circle, and the harmonic polynomials can be used to present the solution of the original problem in a ring as two series uniformly convergent in the closure of the ring. Moreover, the coefficients of the series are easily calculated and do not require the calculation of integrals. As a result, we obtain an exact representation for the solution of the Neumann boundary value problem in the ring in the form of two series in the mentioned system of harmonic wavelets and find an estimate for the error of approximating the exact solution by partial sums of the series. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved.en
dc.description.sponsorshipThis study is a part of the research carried out at the Ural Mathematical Center.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen1
dc.publisherKrasovskii Institute of Mathematics and Mechanics UB RASen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTr. Inst. Mat. Meh. UrO RAN2
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectHARMONIC FUNCTIONSen
dc.subjectINTERPOLATING WAVELETSen
dc.subjectNEUMANN BOUNDARY VALUE PROBLEMen
dc.titleHarmonic Interpolating Wavelets in the Neumann Boundary Value Problem in a Ringen
dc.title.alternativeГармонические интерполяционные всплески в краевой задаче Неймана в кольцеru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi44314675-
dc.identifier.doi10.21538/0134-4889-2020-26-4-279-289-
dc.identifier.scopus85103677613-
local.contributor.employeeYamkovoi, D.A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federationen
local.description.firstpage279-
local.description.lastpage289-
local.issue4-
local.volume26-
dc.identifier.wos000609903100020-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation; Ural Federal University, Yekaterinburg, 620000, Russian Federationen
local.identifier.pure20231640-
local.identifier.eid2-s2.0-85103677613-
local.identifier.wosWOS:000609903100020-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85103677613.pdf207,56 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.