Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111188
Название: | Numerical Methods for Stochastic Systems Preserving Symplectic Structure |
Авторы: | Milstein, G. N. Repin, Yu. M. Tretyakov, M. V. |
Дата публикации: | 2002 |
Издатель: | Society for Industrial & Applied Mathematics (SIAM) |
Библиографическое описание: | Milstein G. N. Numerical Methods for Stochastic Systems Preserving Symplectic Structure / G. N. Milstein, Yu. M. Repin, M. V. Tretyakov // SIAM Journal on Numerical Analysis. — 2002. — Vol. 40. — Iss. 4. — P. 1583-1604. |
Аннотация: | Stochastic Hamiltonian systems with multiplicative noise, phase flows of which preserve symplectic structure, are considered. To construct symplectic methods for such systems, sufficiently general fully implicit schemes, i.e., schemes with implicitness both in deterministic and stochastic terms, are needed. A new class of fully implicit methods for stochastic systems is proposed. Increments of Wiener processes in these fully implicit schemes are substituted by some truncated random variables. A number of symplectic integrators is constructed. Special attention is paid to systems with separable Hamiltonians. Some results of numerical experiments are presented. They demonstrate superiority of the proposed symplectic methods over very long times in comparison with nonsymplectic ones. |
Ключевые слова: | IMPLICIT METHODS MEAN-SQUARE CONVERGENCE STOCHASTIC HAMILTONIAN SYSTEMS SYMPLECTIC INTEGRATION CONVERGENCE OF NUMERICAL METHODS DIFFERENTIAL EQUATIONS FINITE ELEMENT METHOD HAMILTONIANS MEAN-SQUARE CONVERGENCE RANDOM PROCESSES |
URI: | http://elar.urfu.ru/handle/10995/111188 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 0141869053 |
Идентификатор WOS: | 000179064100017 |
Идентификатор PURE: | 43027915 |
ISSN: | 0036-1429 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-0141869053.pdf | 401,21 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.