Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111183
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorTimofeeva, G. A.en
dc.contributor.authorZavalishchin, D. S.en
dc.date.accessioned2022-05-12T08:14:04Z-
dc.date.available2022-05-12T08:14:04Z-
dc.date.issued2021-
dc.identifier.citationTimofeeva G. A. Game with a Random Second Player and its Application to the Problem of Optimal Fare Choice [Игра со случайным вторым игроком и еe приложение к задаче о выборе цены проезда] / G. A. Timofeeva, D. S. Zavalishchin. — DOI 10.3390/su14031572 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2021. — Vol. 57. — P. 170-180.en
dc.identifier.issn2226-3594-
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111183-
dc.description.abstractThe choice of the optimal strategy for a significant number of applied problems can be formalized as a game theory problem, even in conditions of incomplete information. The article deals with a hierarchical game with a random second player, in which the first player chooses a deterministic solution, and the second player is represented by a set of decision makers. The strategies of the players that ensure the Stackelberg equilibrium are studied. The strategy of the second player is formalized as a probabilistic solution to an optimization problem with an objective function depending on a continuously distributed random parameter. In many cases, the choice of optimal strategies takes place in conditions when there are many decision makers, and each of them chooses a decision based on his (her) criterion. The mathematical formalization of such problems leads to the study of probabilistic solutions to problems with an objective function depending on a random parameter. In particular, probabilistic solutions are used for mathematical describing the passenger’s choice of a mode of transport. The problem of optimal fare choice for a new route based on a probabilistic model of passenger preferences is considered. In this formalization, the carrier that sets the fare is treated as the first player; the set of passengers is treated as the second player. The second player’s strategy is formalized as a probabilistic solution to an optimization problem with a random objective function. A model example is considered. © 2021 Udmurt State University. All rights reserved.en
dc.description.sponsorshipFunding. The study was funded by federal budget of the Russian Federation within the framework of the state order, the project «Optimization of the transport and logistics system based on modeling the development of transport infrastructure and models of consumer preference».en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen1
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectHIERARCHICAL GAMEen
dc.subjectOPTIMAL FAREen
dc.subjectPROBABILISTIC SOLUTIONen
dc.subjectRANDOM SECOND PLAYERen
dc.subjectROUTE SELECTIONen
dc.subjectSTACKELBERG EQUILIBRIUMen
dc.titleGame with a Random Second Player and its Application to the Problem of Optimal Fare Choiceen
dc.title.alternativeИгра со случайным вторым игроком и еe приложение к задаче о выборе цены проездаru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46113057-
dc.identifier.doi10.35634/2226-3594-2021-57-08-
dc.identifier.scopus85111787108-
local.contributor.employeeTimofeeva, G.A., Ural State University of Railway Transport, ul. Kolmogorova, 66, Yekaterinburg, 620034, Russian Federation, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation; Zavalishchin, D.S., N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russian Federation, Ural State University of Railway Transport, ul. Kolmogorova, 66, Yekaterinburg, 620034, Russian Federationen
local.description.firstpage170-
local.description.lastpage180-
local.volume57-
dc.identifier.wos000683054500001-
local.contributor.departmentUral State University of Railway Transport, ul. Kolmogorova, 66, Yekaterinburg, 620034, Russian Federation; Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation; N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russian Federation; Ural State University of Railway Transport, ul. Kolmogorova, 66, Yekaterinburg, 620034, Russian Federationen
local.identifier.pure22131858-
local.identifier.eid2-s2.0-85111787108-
local.identifier.wosWOS:000683054500001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85111787108.pdf204,67 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.