Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111157
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorNizovtseva, I. G.en
dc.contributor.authorAlexandrova, I. V.en
dc.contributor.authorIvanov, A. A.en
dc.contributor.authorStarodumov, I. O.en
dc.contributor.authorToropova, L. V.en
dc.contributor.authorGusakova, O. V.en
dc.contributor.authorShepelevich, V. G.en
dc.date.accessioned2022-05-12T08:13:42Z-
dc.date.available2022-05-12T08:13:42Z-
dc.date.issued2021-
dc.identifier.citationOn the Theory of Directional Solidification in the Presence of a Mushy Zone / D. V. Alexandrov, I. G. Nizovtseva, I. V. Alexandrova et al. // Russian Metallurgy (Metally). — 2021. — Vol. 2021. — Iss. 2. — P. 170-175.en
dc.identifier.issn0036-0295-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111157-
dc.description.abstractAbstract: A model is developed for the directional solidification of a binary melt with a two-phase zone (mushy zone), where the fraction of the liquid phase is described by a space–time scaling relation. Self-similar variables are introduced and the interphase boundary growth is inversely proportional to the square root of time. The mathematical model of the process is reformulated using self-similar variables. Exact self-similar solutions of heat-and-mass transfer equations are determined in the presence of two mobile phase-transition boundaries, namely, solid–mushy zone and mushy zone–liquid ones. The temperature and impurity concentration distributions in the solid phase, the mushy zone, and the melt are found as integral expressions. A decrease in the dimensionless cooled-boundary temperature leads to an increase in the solidification rate and the fraction of the liquid phase. The solidification rate, the parabolic growth constants, and the fraction of the liquid phase at the solid–mushy zone boundary are determined depending on the scaling parameter and the thermophysical constants of the solidifying melt. The positions of the solid–mushy zone and mushy zone–binary melt phase transition boundaries are found. The dependences of the solidification rate (inversely proportional to the square root of time) are analyzed. The scaling parameter significantly is shown to substantially affect the solidification rate and the fraction of the liquid phase in the phase transformation region. The developed model and the method of its solution can be generalized to the case of directional solidification of multicomponent melts in the presence of several phase transformation regions (e.g., main and cotectic two-phase zones during the solidification of three-component melts). © 2021, Pleiades Publishing, Ltd.en
dc.description.sponsorshipThis work was supported by the Russian Foundation for Basic Research (project no. 18-58-00034 Bel_a) and the Belarussian Foundation for Basic Research (project no. F18R-195).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherPleiades journalsen1
dc.publisherPleiades Publishing Ltden
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceRuss. Metall. (Metally)2
dc.sourceRussian Metallurgy (Metally)en
dc.subjectMUSHY ZONEen
dc.subjectPHASE TRANSITIONSen
dc.subjectSOLIDIFICATIONen
dc.subjectLIQUIDSen
dc.subjectMASS TRANSFERen
dc.subjectRATE CONSTANTSen
dc.subjectBOUNDARY TEMPERATUREen
dc.subjectHEAT AND MASS TRANSFERen
dc.subjectIMPURITY CONCENTRATIONen
dc.subjectINTERPHASE BOUNDARIESen
dc.subjectPARABOLIC GROWTHen
dc.subjectSCALING PARAMETERen
dc.subjectSELF-SIMILAR SOLUTIONen
dc.subjectSOLIDIFICATION RATEen
dc.subjectSOLIDIFICATIONen
dc.titleOn the Theory of Directional Solidification in the Presence of a Mushy Zoneen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.rsi46804100-
dc.identifier.doi10.1134/S0036029521020026-
dc.identifier.scopus85101836814-
local.contributor.employeeAlexandrov, D.V., Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; Nizovtseva, I.G., Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; Alexandrova, I.V., Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; Ivanov, A.A., Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; Starodumov, I.O., Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; Toropova, L.V., Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; Gusakova, O.V., International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus; Shepelevich, V.G., Belarusian State University, Minsk, Belarusen
local.description.firstpage170-
local.description.lastpage175-
local.issue2-
local.volume2021-
dc.identifier.wos000624001000015-
local.contributor.departmentUral Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation; International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus; Belarusian State University, Minsk, Belarusen
local.identifier.pure21024835-
local.identifier.eid2-s2.0-85101836814-
local.fund.rffi18-58-00034-
local.identifier.wosWOS:000624001000015-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85101836814.pdf683,11 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.