Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111123
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFilanovich, A. N.en
dc.contributor.authorPovzner, A. A.en
dc.date.accessioned2022-05-12T08:13:21Z-
dc.date.available2022-05-12T08:13:21Z-
dc.date.issued2020-
dc.identifier.citationFilanovich A. N. Machine Learning Methods for Predicting the Lattice Characteristics of Materials / A. N. Filanovich, A. A. Povzner // Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020. — 2020. — Vol. — P. 414-416. — 9117689.en
dc.identifier.isbn9781728131658-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111123-
dc.description.abstractData on 5244 crystalline compounds from the open AFLOWlib repository are used to build machine learning models, which enable to predict important features of phonon spectrum of a material (Debye temperature and Gruneisen parameter) required for simulation of its lattice properties. We build two types of descriptors: the first one contains data solely on the chemical composition of a compound and the second one incorporates information on the elemental properties of atoms that make up the compound and additionally contains several features regarding its crystal structure. The regression models are built using four popular approaches - gradient boosting (GB), random forests (RF), artificial neural networks (ANN) and support vector machines (SVM). Prior the regression a search for the best values of hyperparameters has been performed for each of the model supplemented with a 5-fold cross validation. We compare prediction accuracy of models based on different methods as well as trained on each of the descriptors. © 2020 IEEE.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en1
dc.publisherIEEEen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceProc. - Ural Symp. Biomed. Eng., Radioelectron. Inf. Technol., USBEREIT2
dc.sourceProceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020en
dc.subjectMACHINE LEARNINGen
dc.subjectREGRESSIONen
dc.subjectTHERMAL PROPERTIESen
dc.subjectBIOMEDICAL ENGINEERINGen
dc.subjectCRYSTAL ATOMIC STRUCTUREen
dc.subjectDECISION TREESen
dc.subjectFORECASTINGen
dc.subjectNANOCRYSTALLINE MATERIALSen
dc.subjectPHONONSen
dc.subjectPREDICTIVE ANALYTICSen
dc.subjectSUPPORT VECTOR MACHINESen
dc.subjectSUPPORT VECTOR REGRESSIONen
dc.subjectCHEMICAL COMPOSITIONSen
dc.subjectCRYSTALLINE COMPOUNDSen
dc.subjectGRADIENT BOOSTINGen
dc.subjectGRUNEISEN PARAMETERSen
dc.subjectIMPORTANT FEATURESen
dc.subjectMACHINE LEARNING METHODSen
dc.subjectMACHINE LEARNING MODELSen
dc.subjectPREDICTION ACCURACYen
dc.subjectLEARNING SYSTEMSen
dc.titleMachine Learning Methods for Predicting the Lattice Characteristics of Materialsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.name2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020en
dc.conference.date14 May 2020 through 15 May 2020-
dc.identifier.doi10.1109/USBEREIT48449.2020.9117689-
dc.identifier.scopus85089654270-
local.contributor.employeeFilanovich, A.N., Ural Federal University, Physics Department, Ekaterinburg, Russian Federation; Povzner, A.A., Ural Federal University, Physics Department, Ekaterinburg, Russian Federationen
local.description.firstpage414-
local.description.lastpage416-
local.contributor.departmentUral Federal University, Physics Department, Ekaterinburg, Russian Federationen
local.identifier.pure13681162-
local.description.order9117689-
local.identifier.eid2-s2.0-85089654270-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85089654270.pdf207,71 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.