Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111123
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Filanovich, A. N. | en |
dc.contributor.author | Povzner, A. A. | en |
dc.date.accessioned | 2022-05-12T08:13:21Z | - |
dc.date.available | 2022-05-12T08:13:21Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Filanovich A. N. Machine Learning Methods for Predicting the Lattice Characteristics of Materials / A. N. Filanovich, A. A. Povzner // Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020. — 2020. — Vol. — P. 414-416. — 9117689. | en |
dc.identifier.isbn | 9781728131658 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111123 | - |
dc.description.abstract | Data on 5244 crystalline compounds from the open AFLOWlib repository are used to build machine learning models, which enable to predict important features of phonon spectrum of a material (Debye temperature and Gruneisen parameter) required for simulation of its lattice properties. We build two types of descriptors: the first one contains data solely on the chemical composition of a compound and the second one incorporates information on the elemental properties of atoms that make up the compound and additionally contains several features regarding its crystal structure. The regression models are built using four popular approaches - gradient boosting (GB), random forests (RF), artificial neural networks (ANN) and support vector machines (SVM). Prior the regression a search for the best values of hyperparameters has been performed for each of the model supplemented with a 5-fold cross validation. We compare prediction accuracy of models based on different methods as well as trained on each of the descriptors. © 2020 IEEE. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en1 |
dc.publisher | IEEE | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Proc. - Ural Symp. Biomed. Eng., Radioelectron. Inf. Technol., USBEREIT | 2 |
dc.source | Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020 | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | REGRESSION | en |
dc.subject | THERMAL PROPERTIES | en |
dc.subject | BIOMEDICAL ENGINEERING | en |
dc.subject | CRYSTAL ATOMIC STRUCTURE | en |
dc.subject | DECISION TREES | en |
dc.subject | FORECASTING | en |
dc.subject | NANOCRYSTALLINE MATERIALS | en |
dc.subject | PHONONS | en |
dc.subject | PREDICTIVE ANALYTICS | en |
dc.subject | SUPPORT VECTOR MACHINES | en |
dc.subject | SUPPORT VECTOR REGRESSION | en |
dc.subject | CHEMICAL COMPOSITIONS | en |
dc.subject | CRYSTALLINE COMPOUNDS | en |
dc.subject | GRADIENT BOOSTING | en |
dc.subject | GRUNEISEN PARAMETERS | en |
dc.subject | IMPORTANT FEATURES | en |
dc.subject | MACHINE LEARNING METHODS | en |
dc.subject | MACHINE LEARNING MODELS | en |
dc.subject | PREDICTION ACCURACY | en |
dc.subject | LEARNING SYSTEMS | en |
dc.title | Machine Learning Methods for Predicting the Lattice Characteristics of Materials | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020 | en |
dc.conference.date | 14 May 2020 through 15 May 2020 | - |
dc.identifier.doi | 10.1109/USBEREIT48449.2020.9117689 | - |
dc.identifier.scopus | 85089654270 | - |
local.contributor.employee | Filanovich, A.N., Ural Federal University, Physics Department, Ekaterinburg, Russian Federation; Povzner, A.A., Ural Federal University, Physics Department, Ekaterinburg, Russian Federation | en |
local.description.firstpage | 414 | - |
local.description.lastpage | 416 | - |
local.contributor.department | Ural Federal University, Physics Department, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 13681162 | - |
local.description.order | 9117689 | - |
local.identifier.eid | 2-s2.0-85089654270 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85089654270.pdf | 207,71 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.