Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111088
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBagrov, A. A.en
dc.contributor.authorIliasov, A. A.en
dc.contributor.authorWesterhout, T.en
dc.date.accessioned2022-05-12T08:12:43Z-
dc.date.available2022-05-12T08:12:43Z-
dc.date.issued2021-
dc.identifier.citationBagrov A. A. Kinetic Samplers for Neural Quantum States / A. A. Bagrov, A. A. Iliasov, T. Westerhout // Physical Review B. — 2021. — Vol. 104. — Iss. 10. — 104407.en
dc.identifier.issn2469-9950-
dc.identifier.otherAll Open Access, Hybrid Gold, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111088-
dc.description.abstractNeural quantum states are a recently introduced class of variational many-body wave functions that are very flexible in approximating diverse quantum states. Optimization of an NQS ansatz requires sampling from the corresponding probability distribution defined by squared wave function amplitude. For this purpose, we propose to use kinetic sampling protocols and demonstrate that in many important cases such methods lead to much smaller autocorrelation times than the Metropolis-Hastings sampling algorithm while still allowing to easily implement lattice symmetries (unlike autoregressive models). We also use uniform manifold approximation and projection algorithm to construct two-dimensional isometric embedding of Markov chains and show that kinetic sampling helps attain a more homogeneous and ergodic coverage of the Hilbert space basis. © 2021 authors.en
dc.description.sponsorshipThe authors thank Olle Eriksson, Mikhail Katsnelson, and Danny Thonig for useful discussions. The work of T.W. was supported by European Research Council via Synergy Grant 854843—FASTCORR. A.A.I. acknowledges financial support from Dutch Science Foundation NWO/FOM under Grant No. 16PR1024. A.A.B. acknowledges support from the Russian Science Foundation, Grant No. 18-12-00185. This work was partially supported by Knut and Alice Wallenberg Foundation through Grant No. 2018.0060. This work was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen1
dc.publisherAmerican Physical Society (APS)en
dc.relationinfo:eu-repo/grantAgreement/RSF//18-12-00185en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. B2
dc.sourcePhysical Review Ben
dc.subjectAPPROXIMATION ALGORITHMSen
dc.subjectKINETICSen
dc.subjectMARKOV CHAINSen
dc.subjectPROBABILITY DISTRIBUTIONSen
dc.subjectWAVE FUNCTIONSen
dc.subjectAUTO REGRESSIVE MODELSen
dc.subjectISOMETRIC EMBEDDINGSen
dc.subjectLATTICE SYMMETRYen
dc.subjectMANY BODY WAVE FUNCTIONSen
dc.subjectMETROPOLIS-HASTINGS SAMPLINGSen
dc.subjectPROJECTION ALGORITHMSen
dc.subjectQUANTUM STATEen
dc.subjectSAMPLING PROTOCOLen
dc.subjectIMPORTANCE SAMPLINGen
dc.titleKinetic Samplers for Neural Quantum Statesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi47038803-
dc.identifier.doi10.1103/PhysRevB.104.104407-
dc.identifier.scopus85114500740-
local.contributor.employeeBagrov, A.A., Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Sweden, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation; Iliasov, A.A., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, Netherlands, Space Research Institute of the Russian Academy of Science, Moscow, 117997, Russian Federation; Westerhout, T., Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, Netherlandsen
local.issue10-
local.volume104-
dc.identifier.wos000693417500002-
local.contributor.departmentDepartment of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Sweden; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, Netherlands; Space Research Institute of the Russian Academy of Science, Moscow, 117997, Russian Federationen
local.identifier.pure23689310-
local.description.order104407-
local.identifier.eid2-s2.0-85114500740-
local.fund.rsf18-12-00185-
local.identifier.wosWOS:000693417500002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85114500740.pdf2,32 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.