Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/103380
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorIvanov, A. O.en
dc.contributor.authorCamp, P. J.en
dc.date.accessioned2021-08-31T15:09:21Z-
dc.date.available2021-08-31T15:09:21Z-
dc.date.issued2020-
dc.identifier.citationIvanov A. O. Effects of interactions on magnetization relaxation dynamics in ferrofluids / A. O. Ivanov, P. J. Camp. — DOI 10.1103/PhysRevE.102.032610 // Physical Review E. — 2020. — Vol. 102. — Iss. 3. — 032610.en
dc.identifier.issn24700045-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85093910878&doi=10.1103%2fPhysRevE.102.032610&partnerID=40&md5=c12353b814408d91ce9d4b41c39e6da1
dc.identifier.otherhttps://www.pure.ed.ac.uk/ws/files/172057357/20201009_Camp_PhysRevE.102.032610.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/103380-
dc.description.abstractThe dynamics of magnetization relaxation in ferrofluids are studied with statistical-mechanical theory and Brownian dynamics simulations. The particle dipole moments are initially perfectly aligned, and the magnetization is equal to its saturation value. The magnetization is then allowed to decay under zero-field conditions toward its equilibrium value of zero. The time dependence is predicted by solving the Fokker-Planck equation for the one-particle orientational distribution function. Interactions between particles are included by introducing an effective magnetic field acting on a given particle and arising from all of the other particles. Two different approximations are proposed and tested against simulations: a first-order modified mean-field theory and a modified Weiss model. The theory predicts that the short-time decay is characterized by the Brownian rotation time τB, independent of the interaction strength. At times much longer than τB, the asymptotic decay time is predicted to grow with increasing interaction strength. These predictions are borne out by the simulations. The modified Weiss model gives the best agreement with simulation, and its range of validity is limited to moderate, but realistic, values of the dipolar coupling constant. © 2020 American Physical Society.en
dc.description.sponsorshipA.O.I. gratefully acknowledges research funding from the Ministry of Science and Higher Education of the Russian Federation (Contract No. 02.A03.21.006, Ural Mathematical Center Project No. 075-02-2020-1537/1).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. E2
dc.sourcePhysical Review Een
dc.subjectDISTRIBUTION FUNCTIONSen
dc.subjectDYNAMICSen
dc.subjectFOKKER PLANCK EQUATIONen
dc.subjectMAGNETIC FLUIDSen
dc.subjectMEAN FIELD THEORYen
dc.subjectBROWNIAN DYNAMICS SIMULATIONSen
dc.subjectEQUILIBRIUM VALUEen
dc.subjectINTERACTION STRENGTHen
dc.subjectMAGNETIZATION RELAXATIONen
dc.subjectMODIFIED MEAN FIELDSen
dc.subjectORIENTATIONAL DISTRIBUTION FUNCTIONSen
dc.subjectSATURATION VALUESen
dc.subjectSTATISTICAL MECHANICAL THEORYen
dc.subjectSATURATION MAGNETIZATIONen
dc.subjectARTICLEen
dc.subjectDIPOLEen
dc.subjectFIELD STUDYen
dc.subjectLEISUREen
dc.subjectMAGNETIC FIELDen
dc.subjectPREDICTIONen
dc.subjectROTATIONen
dc.subjectSIMULATIONen
dc.subjectTHEORETICAL STUDYen
dc.subjectVALIDITYen
dc.titleEffects of interactions on magnetization relaxation dynamics in ferrofluidsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1103/PhysRevE.102.032610-
dc.identifier.scopus85093910878-
local.contributor.employeeIvanov, A.O., Department of Theoretical and Mathematical Physics, Ural Mathematical Center, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeCamp, P.J., School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom, Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.issue3-
local.volume102-
dc.identifier.wos000574952800006-
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Ural Mathematical Center, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.contributor.departmentSchool of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.identifier.pure0f5902ee-8ee7-466d-992e-e6dea4a89e9euuid
local.identifier.pure14152409-
local.description.order032610-
local.identifier.eid2-s2.0-85093910878-
local.identifier.wosWOS:000574952800006-
local.identifier.pmid33075873-
local.fund.umc075-02-2020-1537-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85093910878.pdf1,5 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.