Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/103327
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Eroshenko, S. A. | en |
dc.contributor.author | Khalyasmaa, A. I. | en |
dc.contributor.author | Snegirev, D. A. | en |
dc.contributor.author | Dubailova, V. V. | en |
dc.contributor.author | Romanov, A. M. | en |
dc.contributor.author | Butusov, D. N. | en |
dc.date.accessioned | 2021-08-31T15:09:00Z | - |
dc.date.available | 2021-08-31T15:09:00Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | The impact of data filtration on the accuracy of multiple time-domain forecasting for photovoltaic power plants generation / S. A. Eroshenko, A. I. Khalyasmaa, D. A. Snegirev, et al. — DOI 10.3390/app10228265 // Applied Sciences (Switzerland). — 2020. — Vol. 10. — Iss. 22. — P. 1-22. — 8265. | en |
dc.identifier.issn | 20763417 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096391651&doi=10.3390%2fapp10228265&partnerID=40&md5=571609663768ba2682ae0c5d4cab04fa | |
dc.identifier.other | https://www.mdpi.com/2076-3417/10/22/8265/pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/103327 | - |
dc.description.abstract | The paper reports the forecasting model for multiple time-domain photovoltaic power plants, developed in response to the necessity of bad weather days’ accurate and robust power generation forecasting. We provide a brief description of the piloted short-term forecasting system and place under close scrutiny the main sources of photovoltaic power plants’ generation forecasting errors. The effectiveness of the empirical approach versus unsupervised learning was investigated in application to source data filtration in order to improve the power generation forecasting accuracy for unstable weather conditions. The k-nearest neighbors’ methodology was justified to be optimal for initial data filtration, based on the clusterization results, associated with peculiar weather and seasonal conditions. The photovoltaic power plants’ forecasting accuracy improvement was further investigated for a one hour-ahead time-domain. It was proved that operational forecasting could be implemented based on the results of short-term day-ahead forecast mismatches predictions, which form the basis for multiple time-domain integrated forecasting tools. After a comparison of multiple time series forecasting approaches, operational forecasting was realized based on the second-order autoregression function and applied to short-term forecasting errors with the resulting accuracy of 87%. In the concluding part of the article the authors from the points of view of computational efficiency and scalability proposed the hardware system composition. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI AG | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Appl. Sci. | 2 |
dc.source | Applied Sciences (Switzerland) | en |
dc.subject | AUTOREGRESSION | en |
dc.subject | DATA FILTRATION | en |
dc.subject | DATA PROCESSING | en |
dc.subject | K-NEAREST NEIGHBORS | en |
dc.subject | PHOTOVOLTAIC POWER PLANT | en |
dc.subject | REGRESSION | en |
dc.subject | SHORT-TERM FORECASTING | en |
dc.title | The impact of data filtration on the accuracy of multiple time-domain forecasting for photovoltaic power plants generation | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/app10228265 | - |
dc.identifier.scopus | 85096391651 | - |
local.contributor.employee | Eroshenko, S.A., Ural Power Engineering Institute, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | |
local.contributor.employee | Khalyasmaa, A.I., Ural Power Engineering Institute, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | |
local.contributor.employee | Snegirev, D.A., Ural Power Engineering Institute, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Dubailova, V.V., Ural Power Engineering Institute, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Romanov, A.M., Institute of Cybernetics, MIREA-Russian Technological University, Moscow, 119454, Russian Federation | |
local.contributor.employee | Butusov, D.N., Youth Research Institute, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, 197376, Russian Federation | |
local.description.firstpage | 1 | - |
local.description.lastpage | 22 | - |
local.issue | 22 | - |
local.volume | 10 | - |
dc.identifier.wos | 000594191900001 | - |
local.contributor.department | Ural Power Engineering Institute, Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation | |
local.contributor.department | Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | |
local.contributor.department | Institute of Cybernetics, MIREA-Russian Technological University, Moscow, 119454, Russian Federation | |
local.contributor.department | Youth Research Institute, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, 197376, Russian Federation | |
local.identifier.pure | 67076665-fba5-4388-82ec-0c085179c485 | uuid |
local.identifier.pure | 20139097 | - |
local.description.order | 8265 | - |
local.identifier.eid | 2-s2.0-85096391651 | - |
local.identifier.wos | WOS:000594191900001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85096391651.pdf | 10,08 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.