Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/103254
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBagrov, A. A.en
dc.contributor.authorIakovlev, I. A.en
dc.contributor.authorIliasov, A. A.en
dc.contributor.authorKatsnelson, M. I.en
dc.contributor.authorMazurenko, V. V.en
dc.date.accessioned2021-08-31T15:08:38Z-
dc.date.available2021-08-31T15:08:38Z-
dc.date.issued2020-
dc.identifier.citationMultiscale structural complexity of natural patterns / A. A. Bagrov, I. A. Iakovlev, A. A. Iliasov, et al. — DOI 10.1073/pnas.2004976117 // Proceedings of the National Academy of Sciences of the United States of America. — 2020. — Vol. 117. — Iss. 48. — P. 30241-30251.en
dc.identifier.issn278424-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097210680&doi=10.1073%2fpnas.2004976117&partnerID=40&md5=79c2d745dcd6565879daa55b83454b56
dc.identifier.otherhttps://www.pnas.org/content/pnas/117/48/30241.full.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/103254-
dc.description.abstractComplexity of patterns is key information for human brain to differ objects of about the same size and shape. Like other innate human senses, the complexity perception cannot be easily quantified. We propose a transparent and universal machine method for estimating structural (effective) complexity of two-dimensional and three-dimensional patterns that can be straightforwardly generalized onto other classes of objects. It is based on multistep renormalization of the pattern of interest and computing the overlap between neighboring renormalized layers. This way, we can define a single number characterizing the structural complexity of an object. We apply this definition to quantify complexity of various magnetic patterns and demonstrate that not only does it reflect the intuitive feeling of what is “complex” and what is “simple” but also, can be used to accurately detect different phase transitions and gain information about dynamics of nonequilibrium systems. When employed for that, the proposed scheme is much simpler and numerically cheaper than the standard methods based on computing correlation functions or using machine learning techniques. © 2020 National Academy of Sciences. All rights reserved.en
dc.description.sponsorshipWe thank Yuri Bakhtin, Victor Kleptsyn, Eugene Koonin, Denis Kosygin, Slava Rychkov, Stanislav Smirnov, and Tom Wester-hout for useful discussions and Elena Mazurenko for technical assistance in conducting food dye experiments. The work of A.A.B., I.A.I., and V.V.M. was supported by Russian Science Foundation Grant 18-12-00185. A.A.I. acknowledges financial support from Dutch Science Foundation Neder-landse Organisatie voor Wetenschappelijk Onderzoek (NWO)/Foundation for Fundamental Research on Matter Grant 16PR1024. M.I.K. acknowledges support from NWO Spinoza Prize. This work was partially supported by Knut and Alice Wallenberg Foundation Grant 2018.0060.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNational Academy of Sciencesen
dc.relationinfo:eu-repo/grantAgreement/RSF//18-12-00185en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceProc. Natl. Acad. Sci. U. S. A.2
dc.sourceProceedings of the National Academy of Sciences of the United States of Americaen
dc.subjectPATTERN FORMATION | COMPLEXITY | RENORMALIZATION GROUP | IMAGE PROCESSINGen
dc.subjectARTICLEen
dc.subjectBODY PATTERNINGen
dc.subjectCORRELATION FUNCTIONen
dc.subjectHUMANen
dc.subjectIMAGE PROCESSINGen
dc.subjectMACHINE LEARNINGen
dc.subjectPHASE TRANSITIONen
dc.subjectQUANTITATIVE ANALYSISen
dc.titleMultiscale structural complexity of natural patternsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1073/pnas.2004976117-
dc.identifier.scopus85097210680-
local.contributor.employeeBagrov, A.A., Department of Physics and Astronomy, Uppsala University, Uppsala, SE-75120, Sweden, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeIakovlev, I.A., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeIliasov, A.A., Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, Netherlands
local.contributor.employeeKatsnelson, M.I., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, Netherlands
local.contributor.employeeMazurenko, V.V., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.description.firstpage30241-
local.description.lastpage30251-
local.issue48-
local.volume117-
dc.identifier.wos000596583400014-
local.contributor.departmentDepartment of Physics and Astronomy, Uppsala University, Uppsala, SE-75120, Sweden
local.contributor.departmentTheoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.contributor.departmentInstitute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, Netherlands
local.identifier.pure0b24c150-d9c2-483e-ade4-d6d8e69f3d7buuid
local.identifier.pure20217034-
local.identifier.eid2-s2.0-85097210680-
local.fund.rsf18-12-00185-
local.identifier.wosWOS:000596583400014-
local.identifier.pmid33208537-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85097210680.pdf2,41 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.