Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/103242
Title: Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation
Конвективные слоистые течения вертикально завихренной вязкой несжимаемой жидкости. Исследование температурного поля
Authors: Burmasheva, N. V.
Prosviryakov, E. Yu.
Issue Date: 2020
Publisher: Samara State Technical University
Citation: Burmasheva N. V. Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation [Конвективные слоистые течения вертикально завихренной вязкой несжимаемой жидкости. Исследование температурного поля] / N. V. Burmasheva, E. Yu. Prosviryakov. — DOI 10.14498/VSGTU1770 // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki. — 2020. — Vol. 24. — Iss. 3. — P. 528-541.
Abstract: The paper discusses a class of exact solutions of the Oberbeck-Boussinesq equations suitable for describing three-dimensional nonlinear layered flows of a vertically swirling viscous incompressible fluid. An inhomogeneous distribution of the velocity field (there is a dependence of the field components on the horizontal coordinates) generates a vertical swirl in the fluid without external rotation (excluding Coriolis acceleration). Setting the linearly distributed heat field and the field of shear stresses at the boundaries of the flow region is one of the reasons inducing convection in a viscous incompressible fluid. The main attention is paid to the study of the temperature field properties. The effect of vertical twist on the distribution of isolines of this field is studied. It is shown that the homogeneous component of the temperature field can be stratified into several zones relative to the reference value, and the number of such zones does not exceed nine. The inclusion of inhomogeneous components of the temperature field can only decrease this number. It is also demonstrated that the class discussed in the paper allows one to generalize the previously obtained results on modeling convective flows of viscous incompressible fluids. © 2020 Samara State Technical University. All rights reserved.
Keywords: COUNTERFLOW
EXACT SOLUTION
LAYERED CONVECTION
SHEAR STRESS
STRATIFICATION
SYSTEM OF OBERBECK-BOUSSINESQ EQUATIONS
VERTICAL TWIST
URI: http://hdl.handle.net/10995/103242
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85097496782
PURE ID: 20221780
b58520ad-a256-42d7-b0b5-3048b8262235
ISSN: 19918615
DOI: 10.14498/VSGTU1770
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85097496782.pdf1,16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.