Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/103215
Название: | Conjoint approach of the "residual" prediction and the nonlinear autoregressive neural network increases the forecast precision of the base model |
Авторы: | Sergeev, A. Shichkin, A. Buevich, A. Baglaeva, E. Subbotina, I. Rakhmatova, A. Kosachenko, A. Moskaleva, A. Medvedev, A. Sergeeva, M. |
Дата публикации: | 2020 |
Издатель: | American Institute of Physics Inc. |
Библиографическое описание: | Conjoint approach of the "residual" prediction and the nonlinear autoregressive neural network increases the forecast precision of the base model / A. Sergeev, A. Shichkin, A. Buevich, et al. — DOI 10.1063/5.0027179 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 120021. |
Аннотация: | An algorithm based on predicting the residuals of the nonlinear autoregressive neural network model with external input (NARX), which can improve the prediction accuracy, was proposed. Data of the concentration of one of the main greenhouse gases methane (CH4) on the Arctic Island of Belyy, Russia, were used for prediction. A time interval, which was characterized by high daily fluctuations in the CH4 concentration was selected. The forecast accuracy was determined by the mean absolute error (MAE), root mean squared error (RMSE) and root mean squared relative error (RMSRE) errors. The use of the algorithm allowed to increase the forecast accuracy from 11% for RMSE to 20% for RMSRE. © 2020 American Institute of Physics Inc.. All rights reserved. |
URI: | http://elar.urfu.ru/handle/10995/103215 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85098008756 |
Идентификатор WOS: | 000636709500362 |
Идентификатор PURE: | 1776d91d-8916-4a9a-a442-36e16c687ed9 20386777 |
ISSN: | 0094243X |
ISBN: | 9780735440258 |
DOI: | 10.1063/5.0027179 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85098008756.pdf | 791,89 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.