Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/103197
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorRubtsov, A. N.en
dc.contributor.authorStepanov, E. A.en
dc.contributor.authorLichtenstein, A. I.en
dc.date.accessioned2021-08-31T15:08:16Z-
dc.date.available2021-08-31T15:08:16Z-
dc.date.issued2020-
dc.identifier.citationRubtsov A. N. Collective magnetic fluctuations in Hubbard plaquettes captured by fluctuating local field method / A. N. Rubtsov, E. A. Stepanov, A. I. Lichtenstein. — DOI 10.1103/PhysRevB.102.224423 // Physical Review B. — 2020. — Vol. 102. — Iss. 22. — 224423.en
dc.identifier.issn24699950-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098546083&doi=10.1103%2fPhysRevB.102.224423&partnerID=40&md5=236bc7f59b4122765a1219805f1cac7d
dc.identifier.otherhttp://arxiv.org/pdf/2007.12534m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/103197-
dc.description.abstractWe establish a way to handle main collective fluctuations in correlated quantum systems based on a fluctuating local field concept. This technique goes beyond standard mean-field approaches, such as Hartree-Fock and dynamical mean-field theories (DMFT), as it includes a fluctuating classical field that acts on the leading order parameter of the system. Effective model parameters of this theory are determined from the variational principle, which allows one to resolve the Fierz ambiguity in decoupling of the local interaction term. In the saddle-point approximation for the fluctuating field our method reproduces the mean-field result. The exact numerical integration over this field allows one to consider nonlinear fluctuations of the global order parameter of the system while local correlations can be accounted for by solving the DMFT impurity problem. We apply our method to the magnetic susceptibility of finite Hubbard systems at half-filling and demonstrate that the introduced technique leads to a superior improvement of results with respect to parental mean-field approaches, without significant numerical complications. We show that the fluctuating local field method can be used in a very broad range of temperatures substantially below the Néel temperature of DMFT, which remains a major challenge for all existing theoretical approaches. © 2020 American Physical Society.en
dc.description.sponsorshipThe authors are very grateful to Maria Bandelmann for help with graphics. The work of E.A.S. is supported by the Russian Science Foundation, Grant No. 18-12-00185. A.I.L. acknowledges support by the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG), Project No. ID390715994.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relationinfo:eu-repo/grantAgreement/RSF//18-12-00185en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. B2
dc.sourcePhysical Review Ben
dc.subjectMAGNETIC SUSCEPTIBILITYen
dc.subjectMEAN FIELD THEORYen
dc.subjectDYNAMICAL MEAN-FIELD THEORYen
dc.subjectLOCAL INTERACTIONSen
dc.subjectMAGNETIC FLUCTUATIONen
dc.subjectMEAN FIELD APPROACHen
dc.subjectNUMERICAL INTEGRATIONSen
dc.subjectSADDLE-POINT APPROXIMATIONen
dc.subjectTHEORETICAL APPROACHen
dc.subjectVARIATIONAL PRINCIPLESen
dc.subjectNUMERICAL METHODSen
dc.titleCollective magnetic fluctuations in Hubbard plaquettes captured by fluctuating local field methoden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1103/PhysRevB.102.224423-
dc.identifier.scopus85098546083-
local.contributor.employeeRubtsov, A.N., Russian Quantum Center, Skolkovo Innovation City, Moscow, 121205, Russian Federation, Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russian Federation
local.contributor.employeeStepanov, E.A., I. Institute of Theoretical Physics, Department of Physics, University of Hamburg, Jungiusstrasse 9, Hamburg, 20355, Germany, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeLichtenstein, A.I., I. Institute of Theoretical Physics, Department of Physics, University of Hamburg, Jungiusstrasse 9, Hamburg, 20355, Germany, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation, European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
local.issue22-
local.volume102-
dc.identifier.wos000600836200009-
local.contributor.departmentRussian Quantum Center, Skolkovo Innovation City, Moscow, 121205, Russian Federation
local.contributor.departmentDepartment of Physics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russian Federation
local.contributor.departmentI. Institute of Theoretical Physics, Department of Physics, University of Hamburg, Jungiusstrasse 9, Hamburg, 20355, Germany
local.contributor.departmentTheoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.departmentEuropean XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
local.identifier.pure458dde86-e221-4fc6-b5e2-b9104137cd42uuid
local.identifier.pure20376934-
local.description.order224423-
local.identifier.eid2-s2.0-85098546083-
local.fund.rsf18-12-00185-
local.identifier.wosWOS:000600836200009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85098546083.pdf1,01 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.