Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/103182
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAkimova, E. N.en
dc.contributor.authorDeikov, A. A.en
dc.date.accessioned2021-08-31T15:08:12Z-
dc.date.available2021-08-31T15:08:12Z-
dc.date.issued2020-
dc.identifier.citationAkimova E. N. Super-resolution of satellite images: Feasibility of deep learning techniques / E. N. Akimova, A. A. Deikov. — DOI 10.1063/5.0026613 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 140002.en
dc.identifier.isbn9780735440258-
dc.identifier.issn0094243X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098012179&doi=10.1063%2f5.0026613&partnerID=40&md5=3b56a04e2ff383cb43b7202318c7ae4a
dc.identifier.urihttp://elar.urfu.ru/handle/10995/103182-
dc.description.abstractThe work is devoted to studying the feasibility of applying the convolutional neural networks with deep learning to the problems of super-resolution of satellite images. The main aim is to enhance the image details and delete the artifacts. The algorithms for resolution enhancement were studied. The training set of satellite images was prepared. The neural network was constructed and trained using the PyTorch library for the Python language and the NVIDIA Tesla K40m graphics processors. Comparison of constructed network with the classic interpolation algorithms was carried out for the reference satellite images. It was shown that the neural network gives a better quality of the images. © 2020 American Institute of Physics Inc.. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conf. Proc.2
dc.sourceAIP Conference Proceedingsen
dc.subjectCUD Aen
dc.subjectDEEP LEARNINGen
dc.subjectNEURAL NETWORKen
dc.subjectPY TORCHen
dc.subjectPYTHONen
dc.subjectSUPER-RESOLUTIONen
dc.titleSuper-resolution of satellite images: Feasibility of deep learning techniquesen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/5.0026613-
dc.identifier.scopus85098012179-
local.contributor.employeeAkimova, E.N., N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, Ekaterinburg, Russian Federation, Yeltsin Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeDeikov, A.A., Yeltsin Ural Federal University, Yekaterinburg, Russian Federation
local.volume2293-
dc.identifier.wos000636709500177-
local.contributor.departmentN. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, Ekaterinburg, Russian Federation
local.contributor.departmentYeltsin Ural Federal University, Yekaterinburg, Russian Federation
local.identifier.pure3e65533a-63c6-4769-843d-361e61c69456uuid
local.identifier.pure20362490-
local.description.order140002-
local.identifier.eid2-s2.0-85098012179-
local.identifier.wosWOS:000636709500177-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85098012179.pdf918,97 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.