Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/103182
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Akimova, E. N. | en |
dc.contributor.author | Deikov, A. A. | en |
dc.date.accessioned | 2021-08-31T15:08:12Z | - |
dc.date.available | 2021-08-31T15:08:12Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Akimova E. N. Super-resolution of satellite images: Feasibility of deep learning techniques / E. N. Akimova, A. A. Deikov. — DOI 10.1063/5.0026613 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 140002. | en |
dc.identifier.isbn | 9780735440258 | - |
dc.identifier.issn | 0094243X | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098012179&doi=10.1063%2f5.0026613&partnerID=40&md5=3b56a04e2ff383cb43b7202318c7ae4a | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/103182 | - |
dc.description.abstract | The work is devoted to studying the feasibility of applying the convolutional neural networks with deep learning to the problems of super-resolution of satellite images. The main aim is to enhance the image details and delete the artifacts. The algorithms for resolution enhancement were studied. The training set of satellite images was prepared. The neural network was constructed and trained using the PyTorch library for the Python language and the NVIDIA Tesla K40m graphics processors. Comparison of constructed network with the classic interpolation algorithms was carried out for the reference satellite images. It was shown that the neural network gives a better quality of the images. © 2020 American Institute of Physics Inc.. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | AIP Conf. Proc. | 2 |
dc.source | AIP Conference Proceedings | en |
dc.subject | CUD A | en |
dc.subject | DEEP LEARNING | en |
dc.subject | NEURAL NETWORK | en |
dc.subject | PY TORCH | en |
dc.subject | PYTHON | en |
dc.subject | SUPER-RESOLUTION | en |
dc.title | Super-resolution of satellite images: Feasibility of deep learning techniques | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1063/5.0026613 | - |
dc.identifier.scopus | 85098012179 | - |
local.contributor.employee | Akimova, E.N., N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, Ekaterinburg, Russian Federation, Yeltsin Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.employee | Deikov, A.A., Yeltsin Ural Federal University, Yekaterinburg, Russian Federation | |
local.volume | 2293 | - |
dc.identifier.wos | 000636709500177 | - |
local.contributor.department | N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, Ekaterinburg, Russian Federation | |
local.contributor.department | Yeltsin Ural Federal University, Yekaterinburg, Russian Federation | |
local.identifier.pure | 3e65533a-63c6-4769-843d-361e61c69456 | uuid |
local.identifier.pure | 20362490 | - |
local.description.order | 140002 | - |
local.identifier.eid | 2-s2.0-85098012179 | - |
local.identifier.wos | WOS:000636709500177 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85098012179.pdf | 918,97 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.