Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/103179
Title: Some topological properties of the space of maximal linked systems with topology of Wallman type
Некоторые топологические свойства пространства максимальных сцепленных систем с топологией волмэновского типа
Authors: Chentsov, A. G.
Issue Date: 2020
Publisher: Udmurt State University
Citation: Chentsov A. G. Some topological properties of the space of maximal linked systems with topology of Wallman type / A. G. Chentsov. — DOI 10.35634/2226-3594-2020-56-09 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 56. — P. 122-137.
Abstract: Maximal linked systems (MLS) and ultrafilters (u/f) on a widely understood measurable space (this is a nonempty set with equipment in the form of π-system with «zero» and «unit») are investigated. Under equipment with topology of Wallman type, the set of MLS is converted into a supercompact T1-space. Conditions under which given space of MLS is a supercompactum (i. e., a supercompact T2-space) are investigated. These conditions then apply to the space of u/f under equipment with topology of Wallman type. The obtained conditions are coordinated with representations obtained under degenerate cases of bitopological spaces with topologies of Wallman and Stone types, but they are not the last to be exhausted. © 2020 Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta.
Keywords: MAXIMAL LINKED SYSTEM
QUASINEIGHBORHOOD
THE RESEARCH WAS FUNDED BY THE RUSSIAN FOUNDATION FOR BASIC RESEARCH (PROJECT NO. 18–01–00410)
TOPOLOGY
ULTRAFILTER
URI: http://hdl.handle.net/10995/103179
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85099092238
PURE ID: 20249099
ISSN: 22263594
DOI: 10.35634/2226-3594-2020-56-09
metadata.dc.description.sponsorship: The research was funded by the Russian Foundation for Basic Research (project no. 18–01–00410).
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85099092238.pdf240,19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.