Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/103177
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorChentsov, A. G.en
dc.date.accessioned2021-08-31T15:08:10Z-
dc.date.available2021-08-31T15:08:10Z-
dc.date.issued2020-
dc.identifier.citationChentsov A. G. Some questions of differential game theory with phase constraints / A. G. Chentsov. — DOI 10.35634/2226-3594-2020-56-10 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 56. — P. 138-184.en
dc.identifier.issn22263594-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099112046&doi=10.35634%2f2226-3594-2020-56-10&partnerID=40&md5=1bb6cd57a8c3d6dd680185d8f55e1371
dc.identifier.otherhttp://www.mathnet.ru/php/getFT.phtml?jrnid=iimi&paperid=407&what=fullt&option_lang=engm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/103177-
dc.description.abstractDifferential game (DG) of guidance-evasion is considered; moreover, its relaxations constructed with due account for priority considerations in the implementation of target set (TS) guidance and phase constraints (PC) validity are considered. We suppose that TS is closed in a natural topology of position space. With respect to the set that defines PC, it is postulated that the sections corresponding to time fixing are closed. For this setting, with the use of program iteration method (PIM), a variant of alternative for some natural (asymmetric) classes of strategies is established. A scheme of relaxation for the game guidance problem with nonclosed (in general case) set defining PC is considered. Under relaxation construction, reasons connected with priority in the implementation of guidance to TS and PC validity are taken into account (the case of asymmetric weakening of conditions of game ending is investigated). A position function is introduced, values of which (with priority correction) play the role of an analogue of least size for neighborhoods of TS and set defining PC under which it is possible to get a guaranteed solution of a relaxed problem of a player interested in approaching with TS while observing PC. It is demonstrated that the value of given function (when fixing the position of the game) is a price of DG for minimax–maximin quality functional which characterizes both the “degree” of approaching with TS and the “degree” of observance of initial PC. © 2020 Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta.en
dc.description.sponsorshiphe study was funded by RFBR, project number 18–01–00410.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectALTERNATIVEen
dc.subjectDIFFERENTIAL GAMEen
dc.subjectPROGRAM ITERATION METHODen
dc.subjectQUASISTRATEGYen
dc.subjectRELAXATION OF APPROACH PROBLEMen
dc.titleSome questions of differential game theory with phase constraintsen
dc.titleНекоторые вопросы теории дифференциальных игр с фазовыми ограничениямиru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi44327220-
dc.identifier.doi10.35634/2226-3594-2020-56-10-
dc.identifier.scopus85099112046-
local.contributor.employeeChentsov, A.G., Russian Academy of Sciences, N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.description.firstpage138-
local.description.lastpage184-
local.volume56-
dc.identifier.wos000598225100011-
local.contributor.departmentRussian Academy of Sciences, N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation
local.contributor.departmentUral Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.identifier.pure20249197-
local.identifier.eid2-s2.0-85099112046-
local.fund.rffi18-01-00410-
local.identifier.wosWOS:000598225100011-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85099112046.pdf465,39 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.