Please use this identifier to cite or link to this item:
Title: Parameter study for the burst mode of accretion in massive star formation
Authors: Meyer, D. M. -A.
Vorobyov, E. I.
Elbakyan, V. G.
Eislöffel, J.
Sobolev, A. M.
Stöhr, M.
Issue Date: 2021
Publisher: Oxford University Press
Citation: Parameter study for the burst mode of accretion in massive star formation / D. M. -A. Meyer, E. I. Vorobyov, V. G. Elbakyan, et al. — DOI 10.1093/mnras/staa3528 // Monthly Notices of the Royal Astronomical Society. — 2021. — Vol. 500. — Iss. 4. — P. 4448-4468.
Abstract: It is now a widely held view that, in their formation and early evolution, stars build up mass in bursts. The burst mode of star formation scenario proposes that the stars grow in mass via episodic accretion of fragments migrating from their gravitationally unstable circumstellar discs, and it naturally explains the existence of observed pre-main-sequence bursts from high-mass protostars. We present a parameter study of hydrodynamical models of massive young stellar objects (MYSOs) that explores the initial masses of the collapsing clouds (Mc = 60-200 Modot) and ratio of rotational-to-gravitational energies (β = 0.005-0.33). An increase in Mc and/or β produces protostellar accretion discs that are more prone to develop gravitational instability and to experience bursts. We find that all MYSOs have bursts even if their pre-stellar core is such that β ≤ 0.01. Within our assumptions, the lack of stable discs is therefore a major difference between low- and high-mass star formation mechanisms. All our disc masses and disc-to-star mass ratios Md/M⊙ > 1 scale as a power law with the stellar mass. Our results confirm that massive protostars accrete about 40, -, 60 percent of their mass in the burst mode. The distribution of time periods between two consecutive bursts is bimodal: there is a short duration (∼ 1, -, 10 yr) peak corresponding to the short, faintest bursts and a long-duration peak (at ∼ 103 104 yr) corresponding to the long, FU-Orionis-type bursts appearing in later disc evolution, i.e. around 30 kyr after disc formation. We discuss this bimodality in the context of the structure of massive protostellar jets as potential signatures of accretion burst history. © 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
Access: info:eu-repo/semantics/openAccess
RSCI ID: 44994567
SCOPUS ID: 85099693270
WOS ID: 000606297700013
PURE ID: 20515472
ISSN: 358711
DOI: 10.1093/mnras/staa3528
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85099693270.pdf3,3 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.