Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/103138
Название: | On the vortex evolution in non-isothermal protoplanetary discs |
Авторы: | Tarczay-Nehéz, D. Regály, Z. Vorobyov, E. |
Дата публикации: | 2020 |
Издатель: | Oxford University Press |
Библиографическое описание: | Tarczay-Nehéz D. On the vortex evolution in non-isothermal protoplanetary discs / D. Tarczay-Nehéz, Z. Regály, E. Vorobyov. — DOI 10.1093/mnras/staa364 // Monthly Notices of the Royal Astronomical Society. — 2020. — Vol. 493. — Iss. 2. — P. 3014-3025. |
Аннотация: | It is believed that large-scale horseshoe-like brightness asymmetries found in dozens of transitional protoplanetary discs are caused by anticyclonic vortices. These vortices can play a key role in planet formation, as mm-sized dust-the building blocks of planets-can be accumulated inside them. Anticyclonic vortices are formed by the Rossby wave instability, which can be excited at the gap edges opened by a giant planet or at sharp viscosity transitions of accretionally inactive regions. It is known that vortices are prone to stretching and subsequent dissolution due to disc self-gravity for canonical disc masses in the isothermal approximation. To improve the hydrodynamic model of protoplanetary discs, we include the disc thermodynamics in our model. In this paper, we present our results on the evolution of the vortices formed at the outer edge of an accretionally inactive region (dead zone) assuming an ideal equation of state and taking PdV work, disc cooling in the β-Approximation, and disc self-gravity into account. Thermodynamics affects the offset and the mode number (referring to the number of small vortices at the early phase) of the RWI excitation, as well as the strength, shape, and lifetime of the large-scale vortex formed through merging of the initial small vortices. We found that the inclusion of gas thermodynamics results in stronger, however decreased lifetime vortices. Our results suggest that a hypothetical vortex-Aided planet formation scenario favours effectively cooling discs. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. |
Ключевые слова: | ACCRETION ACCRETION DISC HYDRODYNAMICS INSTABILITIES METHODS: NUMERICAL PROTOPLANETARY DISCS |
URI: | http://elar.urfu.ru/handle/10995/103138 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85099855026 |
Идентификатор WOS: | 000525996700105 |
Идентификатор PURE: | 12671171 |
ISSN: | 358711 |
DOI: | 10.1093/mnras/staa364 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85099855026.pdf | 8,5 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.