Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/103084
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSmirnov, N.en
dc.contributor.authorLiu, Y.en
dc.contributor.authorValidi, A.en
dc.contributor.authorMorales-Alvarez, W.en
dc.contributor.authorOlaverri-Monreal, C.en
dc.date.accessioned2021-08-31T15:07:21Z-
dc.date.available2021-08-31T15:07:21Z-
dc.date.issued2021-
dc.identifier.citationA game theory-based approach for modeling autonomous vehicle behavior in congested, urban lane-changing scenarios / N. Smirnov, Y. Liu, A. Validi, et al. — DOI 10.3390/s21041523 // Sensors. — 2021. — Vol. 21. — Iss. 4. — P. 1-20. — 1523.en
dc.identifier.issn14248220-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85101082610&doi=10.3390%2fs21041523&partnerID=40&md5=71d24eb6a1fb14bd045f445ab70f5530
dc.identifier.otherhttps://www.mdpi.com/1424-8220/21/4/1523/pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/103084-
dc.description.abstractAutonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipThis work was supported by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0., IAV France S.A.S.U., IAV GmbH, Austrian Post AG, and the UAS Technikum Wien. It was additionally supported by the Zero Emission Roll-Out?Cold Chain Distribution_877493.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSensors2
dc.sourceSensorsen
dc.subjectGAME THEORYen
dc.subjectINTELLIGENT TRANSPORT SYSTEMSen
dc.subjectLANE CHANGEen
dc.subjectTRAFFIC JAMen
dc.subjectBEHAVIORAL RESEARCHen
dc.subjectDECISION MAKINGen
dc.subjectDECISION THEORYen
dc.subjectFORECASTINGen
dc.subjectGAME THEORYen
dc.subjectMOTOR TRANSPORTATIONen
dc.subjectPREDICTIVE ANALYTICSen
dc.subjectROAD VEHICLESen
dc.subjectROADS AND STREETSen
dc.subjectDECISION MAKING MODELSen
dc.subjectHUMAN DECISION MAKINGen
dc.subjectLANE CHANGE MANEUVERSen
dc.subjectPREDICTION ACCURACYen
dc.subjectPREDICTION MODELen
dc.subjectURBAN INTERSECTIONSen
dc.subjectURBAN SCENARIOSen
dc.subjectURBAN TRAFFIC SCENARIOSen
dc.subjectAUTONOMOUS VEHICLESen
dc.titleA game theory-based approach for modeling autonomous vehicle behavior in congested, urban lane-changing scenariosen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/s21041523-
dc.identifier.scopus85101082610-
local.contributor.employeeSmirnov, N., Chair ITS-Sustainable Transport Logistics 4.0, Johannes Kepler University, Linz, 4040, Austria, Department of Communications Technology, Ural Federal University, Yekaterinburg, 620078, Russian Federation
local.contributor.employeeLiu, Y., Chair ITS-Sustainable Transport Logistics 4.0, Johannes Kepler University, Linz, 4040, Austria
local.contributor.employeeValidi, A., Chair ITS-Sustainable Transport Logistics 4.0, Johannes Kepler University, Linz, 4040, Austria
local.contributor.employeeMorales-Alvarez, W., Chair ITS-Sustainable Transport Logistics 4.0, Johannes Kepler University, Linz, 4040, Austria
local.contributor.employeeOlaverri-Monreal, C., Chair ITS-Sustainable Transport Logistics 4.0, Johannes Kepler University, Linz, 4040, Austria
local.description.firstpage1-
local.description.lastpage20-
local.issue4-
local.volume21-
dc.identifier.wos000624667800001-
local.contributor.departmentChair ITS-Sustainable Transport Logistics 4.0, Johannes Kepler University, Linz, 4040, Austria
local.contributor.departmentDepartment of Communications Technology, Ural Federal University, Yekaterinburg, 620078, Russian Federation
local.identifier.pure21027422-
local.identifier.pure29bccd2b-7047-45b4-bfde-98f4791701b9uuid
local.description.order1523-
local.identifier.eid2-s2.0-85101082610-
local.identifier.wosWOS:000624667800001-
local.identifier.pmid33671694-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85101082610.pdf1,18 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.