Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/103033
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZavalishchin, D.en
dc.date.accessioned2021-08-31T15:07:03Z-
dc.date.available2021-08-31T15:07:03Z-
dc.date.issued2021-
dc.identifier.citationZavalishchin D. Features of optimal control problem moving bodies with variable geometry in a viscous medium with non-constant density / D. Zavalishchin. — DOI 10.1063/5.0041699 // AIP Conference Proceedings. — 2021. — Vol. 2333. — 090018.en
dc.identifier.isbn9780735440777-
dc.identifier.issn0094243X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85102742260&doi=10.1063%2f5.0041699&partnerID=40&md5=48b3169029fa15a77947e7f4a0a966c8
dc.identifier.otherhttps://aip.scitation.org/doi/pdf/10.1063/5.0041699m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/103033-
dc.description.abstractThe problems of two types of dynamic optimization of flow around solids are described in general form. The features of these problems are analyzed from the point of view of the optimal control theory, the difficulties caused by such features, and ways to overcome them. The problem solving schemes developed for the applied engineer are briefly described, the idea of the mathematical justification of one of them is presented. © 2021 Author(s).en
dc.description.sponsorshipThe investigation was supported by the Russian Foundation for Basic Research, project no. 19-01-00371-a.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conf. Proc.2
dc.sourceAIP Conference Proceedingsen
dc.titleFeatures of optimal control problem moving bodies with variable geometry in a viscous medium with non-constant densityen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/5.0041699-
dc.identifier.scopus85102742260-
local.contributor.employeeZavalishchin, D., Optimal Control Dept., N.N.Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya str., 16, Ekaterinburg, 620990, Russian Federation, Ural Federal University Named after First President of Russia B. N. Yeltsin, Mira str., 19, Ekaterinburg, 620002, Russian Federation, Ural State University of Railway Transport, Kolmogorov str., 66, Ekaterinburg, 620034, Russian Federation
local.volume2333-
dc.identifier.wos000664205600019-
local.contributor.departmentOptimal Control Dept., N.N.Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya str., 16, Ekaterinburg, 620990, Russian Federation
local.contributor.departmentUral Federal University Named after First President of Russia B. N. Yeltsin, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.contributor.departmentUral State University of Railway Transport, Kolmogorov str., 66, Ekaterinburg, 620034, Russian Federation
local.identifier.pure21033910-
local.identifier.pure5ccb94c4-64a4-4a3e-9807-ae8904309154uuid
local.description.order090018-
local.identifier.eid2-s2.0-85102742260-
local.fund.rffi19-01-00371-
local.identifier.wosWOS:000664205600019-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85102742260.pdf329,56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.