Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/103021
Title: Traction synchronous homopolar motor: Simplified computation technique and experimental validation
Authors: Dmitrievskii, V.
Prakht, V.
Anuchin, A.
Kazakbaev, V.
Issue Date: 2020
Publisher: Institute of Electrical and Electronics Engineers Inc.
Citation: Traction synchronous homopolar motor: Simplified computation technique and experimental validation / V. Dmitrievskii, V. Prakht, A. Anuchin, et al. — DOI 10.1109/ACCESS.2020.3029740 // IEEE Access. — 2020. — Vol. 8. — P. 185112-185120.
Abstract: Synchronous homopolar motors (SHMs) have been attracting the attention of researchers for many decades. Various mathematical models of SHM have been proposed to deal with its complicated magnetic circuit. Among them, there are time-consuming 3D finite element models (FEM), equivalent circuit models neglecting some significant features of the machine design, and 2D FEM models with virtual excitation winding distorting its magnetic field picture. This paper proposes a novel 2D FEM of SHM and shows that since there are no sources of excitation in the cross-sections of the rotor and stator stacks, no virtual elements are required. This model uses the general solution of the Gauss's law for magnetism containing excitation flux. The model is based on a set of magnetostatic boundary value problems for various rotor positions. The set of boundary problems is completed with the excitation equivalent circuit. The losses in the armature and field windings and the stator and rotor magnetic cores are computed in postprocessing. All these computations are carried out for a single combination of stator and rotor stack. A symmetrization algorithm is proposed to extend the obtained results to the whole SHM. A comparison of the theoretical and experimental data for a nine-phase three-section 320 kW SHM is carried out. These SHMs were used in a mining truck with a carrying capacity of 90 tons. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
Keywords: AC MACHINES
AUTOMOTIVE APPLICATIONS
BRUSHLESS MOTORS
ELECTRIC VEHICLES
ELECTROMAGNETIC MODELING
MINING INDUSTRY
TRACTION MOTOR
BOUNDARY VALUE PROBLEMS
DC MOTORS
EQUIVALENT CIRCUITS
MACHINE DESIGN
MAGNETISM
MAGNETOSTATICS
ROTORS (WINDINGS)
STATORS
SYNCHRONOUS MOTORS
TRACTION MOTORS
WINDING
3D FINITE ELEMENT MODEL
BOUNDARY PROBLEMS
COMPUTATION TECHNIQUES
EQUIVALENT CIRCUIT MODEL
EXPERIMENTAL VALIDATIONS
GENERAL SOLUTIONS
ROTOR AND STATORS
VIRTUAL EXCITATIONS
MAGNETIC CIRCUITS
URI: http://hdl.handle.net/10995/103021
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85102789479
PURE ID: 20147088
ISSN: 21693536
DOI: 10.1109/ACCESS.2020.3029740
metadata.dc.description.sponsorship: This work was supported by the Russian Science Foundation under Grant 16-19-10618.
RSCF project card: 16-19-10618
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85102789479.pdf786,26 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.