Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/102865
Title: Block-Groups and Hall Relations
Authors: Gaysin, A. M.
Volkov, M. V.
Issue Date: 2021
Publisher: Springer
Citation: Gaysin A. M. Block-Groups and Hall Relations / A. M. Gaysin, M. V. Volkov. — DOI 10.1007/978-981-33-4842-4_3 // Springer Proceedings in Mathematics and Statistics. — 2021. — Vol. 345. — P. 25-32.
Abstract: A binary relation on a finite set is called a Hall relation if it contains a permutation of the set. Under the usual relational product, Hall relations form a semigroup which is known to be a block-group, that is, a semigroup with at most one idempotent in each R -class and each L -class. Here we show that in a certain sense, the converse is true: every finite block-group divides a semigroup of Hall relations on a finite set. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keywords: BLOCK-GROUP
HALL RELATION
J -TRIVIAL SEMIGROUP
POWER SEMIGROUP
REFLEXIVE RELATION
SEMIDIRECT PRODUCT
SEMIGROUP DIVISION
BINARY RELATION
BLOCK GROUP
FINITE SET
IDEMPOTENT
L-CLASS
SEMI-GROUP
SET THEORY
URI: http://hdl.handle.net/10995/102865
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85107358539
PURE ID: 22095026
07097912-06d6-4ca8-b965-f68b33b08e88
ISSN: 21941009
ISBN: 9789813348417
DOI: 10.1007/978-981-33-4842-4_3
metadata.dc.description.sponsorship: Supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2020-1537/1).
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85107358539.pdf137,51 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.