Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102858
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorStarodubtseva, Y. V.en
dc.contributor.authorStarodubtsev, I. S.en
dc.contributor.authorIsmail-Zadeh, A. T.en
dc.contributor.authorTsepelev, I. A.en
dc.contributor.authorMelnik, O. E.en
dc.contributor.authorKorotkii, A. I.en
dc.date.accessioned2021-08-31T15:05:43Z-
dc.date.available2021-08-31T15:05:43Z-
dc.date.issued2021-
dc.identifier.citationA Method for Magma Viscosity Assessment by Lava Dome Morphology / Y. V. Starodubtseva, I. S. Starodubtsev, A. T. Ismail-Zadeh, et al. — DOI 10.1134/S0742046321030064 // Journal of Volcanology and Seismology. — 2021. — Vol. 15. — Iss. 3. — P. 159-168.en
dc.identifier.issn7420463-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Hybrid Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107440217&doi=10.1134%2fS0742046321030064&partnerID=40&md5=d48cf35127e08b06c76e3003687c5fb0
dc.identifier.otherhttps://link.springer.com/content/pdf/10.1134/S0742046321030064.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102858-
dc.description.abstractAbstract: Lava domes form when a highly viscous magma erupts on the surface. Several types of lava dome morphology can be distinguished depending on the flow rate and the rheology of magma: obelisks, lava lobes, and endogenic structures. The viscosity of magma nonlinearly depends on the volume fraction of crystals and temperature. Here we present an approach to magma viscosity estimation based on a comparison of observed and simulated morphological forms of lava domes. We consider a two-dimensional axisymmetric model of magma extrusion on the surface and lava dome evolution, and assume that the lava viscosity depends only on the volume fraction of crystals. The crystallization is associated with a growth of the liquidus temperature due to the volatile loss from the magma, and it is determined by the characteristic time of crystal content growth (CCGT) and the discharge rate. Lava domes are modeled using a finite-volume method implemented in Ansys Fluent software for various CCGTs and volcanic vent sizes. For a selected eruption duration a set of morphological shapes of domes (shapes of the interface between lava dome and air) is obtained. Lava dome shapes modeled this way are compared with the observed shape of the lava dome (synthesized in the study by a random modification of one of the calculated shapes). To estimate magma viscosity, the deviation between the observed dome shape and the simulated dome shapes is assessed by three functionals: the symmetric difference, the peak signal-to-noise ratio, and the structural similarity index measure. These functionals are often used in the computer vision and in image processing. Although each functional allows to determine the best fit between the modeled and observed shapes of lava dome, the functional based on the structural similarity index measure performs it better. The viscosity of the observed dome can be then approximated by the viscosity of the modeled dome, which shape fits best the shape of the observed dome. This approach can be extended to three-dimensional case studies to restore the conditions of natural lava dome growth. © 2021, The Author(s).en
dc.description.sponsorshipWe are grateful to two anonymous reviewers for their constructive comments. Numerical experiments were carried out on the Uran computing cluster (Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg). The work was supported by the Russian Science Foundation (project no. 19-17-00027).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherPleiades journalsen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-17-00027en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ. Volcanol. Seismol.2
dc.sourceJournal of Volcanology and Seismologyen
dc.subjectIMAGE PROCESSINGen
dc.subjectLAVA DOMEen
dc.subjectMORPHOLOGYen
dc.subjectNUMERICAL ANALYSISen
dc.subjectVISCOSITYen
dc.subjectASSESSMENT METHODen
dc.subjectCRYSTALen
dc.subjectCRYSTALLIZATIONen
dc.subjectGEOMORPHOLOGYen
dc.subjectIMAGE PROCESSINGen
dc.subjectLAVA DOMEen
dc.subjectMAGMA CHEMISTRYen
dc.subjectNUMERICAL METHODen
dc.subjectTEMPERATUREen
dc.subjectTHREE-DIMENSIONAL MODELINGen
dc.subjectVISCOSITYen
dc.titleA Method for Magma Viscosity Assessment by Lava Dome Morphologyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1134/S0742046321030064-
dc.identifier.scopus85107440217-
local.contributor.employeeStarodubtseva, Y.V., Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997, Russian Federation, N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990, Russian Federation
local.contributor.employeeStarodubtsev, I.S., Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997, Russian Federation, N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990, Russian Federation, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeIsmail-Zadeh, A.T., Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997, Russian Federation, Karlsruhe Institute of Technology, Institute of Applied Geosciences, Karlsruhe, 76131, Germany
local.contributor.employeeTsepelev, I.A., Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997, Russian Federation, N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990, Russian Federation
local.contributor.employeeMelnik, O.E., Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997, Russian Federation, Institute of Mechanics, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
local.contributor.employeeKorotkii, A.I., Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997, Russian Federation, N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990, Russian Federation
local.description.firstpage159-
local.description.lastpage168-
local.issue3-
local.volume15-
dc.identifier.wos000659506400002-
local.contributor.departmentInstitute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, 117997, Russian Federation
local.contributor.departmentN.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990, Russian Federation
local.contributor.departmentUral Federal University, Yekaterinburg, 620002, Russian Federation
local.contributor.departmentKarlsruhe Institute of Technology, Institute of Applied Geosciences, Karlsruhe, 76131, Germany
local.contributor.departmentInstitute of Mechanics, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
local.identifier.pure22107516-
local.identifier.puref2eb7ef6-56c0-4766-9240-e805272b5189uuid
local.identifier.eid2-s2.0-85107440217-
local.fund.rsf19-17-00027-
local.identifier.wosWOS:000659506400002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85107440217.pdf1,46 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.