Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102838
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorZyuzin, V.en
dc.contributor.authorRonkin, M.en
dc.contributor.authorPorshnev, S.en
dc.contributor.authorKalmykov, A.en
dc.date.accessioned2021-08-31T15:05:36Z-
dc.date.available2021-08-31T15:05:36Z-
dc.date.issued2021-
dc.identifier.citationComputer vision system for the automatic asbestos content control in stones / V. Zyuzin, M. Ronkin, S. Porshnev, et al. — DOI 10.1088/1742-6596/1727/1/012014 // Journal of Physics: Conference Series. — 2021. — Vol. 1727. — Iss. 1. — 012014.en
dc.identifier.issn17426588-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85101718585&doi=10.1088%2f1742-6596%2f1727%2f1%2f012014&partnerID=40&md5=4f917263c0a09baec92e1d1a04881364
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102838-
dc.description.abstractThe paper discusses the results of the first stage of research and development an innovative computer vision system for the automatic asbestos content control in stones veins at an asbestos processing factory. The discussed system is based on the applying of a semantic segmentation artificial neural networks, in particular U-Net based network architectures for solving both: the boundariesof stones segmentation and veins inside them. At the current stage, the following tasks were solved. 1. The discussed system prototype is developed. The system is allowing to takes images of the asbestos stones on the conveyor belt in the near-infrared range (NIR), avoiding the outer lighting influence, and processing the obtaining images. 2. The training, validation and test datasets were collected. 3. Substantiated the choice of the U-Net based neural network. 4. Proposed to estimate the resulted specific asbestos concentration as the average relation of all the veins square to all stones square on the image. 5. The resulted deviation between obtained and laboratory given results ofthe asbestos concentration is about 0.058 in the slope of graduation curve. The farther improvementrecommendations for the developed system are given. © Published under licence by IOP Publishing Ltd.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherIOP Publishing Ltden
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ. Phys. Conf. Ser.2
dc.sourceJournal of Physics: Conference Seriesen
dc.subjectBELT CONVEYORSen
dc.subjectBIG DATAen
dc.subjectCOMPUTER CONTROL SYSTEMSen
dc.subjectCOMPUTER VISIONen
dc.subjectINFRARED DEVICESen
dc.subjectNETWORK ARCHITECTUREen
dc.subjectNEURAL NETWORKSen
dc.subjectSEMANTICSen
dc.subjectCOMPUTER VISION SYSTEMen
dc.subjectCONTENT CONTROLen
dc.subjectCONVEYOR BELTSen
dc.subjectNEAR-INFRARED RANGEen
dc.subjectRESEARCH AND DEVELOPMENTen
dc.subjectSEMANTIC SEGMENTATIONen
dc.subjectSYSTEM PROTOTYPEen
dc.subjectASBESTOSen
dc.titleComputer vision system for the automatic asbestos content control in stonesen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1088/1742-6596/1727/1/012014-
dc.identifier.scopus85101718585-
local.contributor.employeeZyuzin, V., Ural Federal University, IRIT-RTF, Russian Federation
local.contributor.employeeRonkin, M., Ural Federal University, IRIT-RTF, Russian Federation
local.contributor.employeePorshnev, S., Ural Federal University, IRIT-RTF, Russian Federation, N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural, Branch of the Russian Academy of Sciences, Russian Federation
local.contributor.employeeKalmykov, A., Ural Federal University, IRIT-RTF, Russian Federation
local.issue1-
local.volume1727-
local.contributor.departmentUral Federal University, IRIT-RTF, Russian Federation
local.contributor.departmentN. N. Krasovskii Institute of Mathematics and Mechanics of the Ural, Branch of the Russian Academy of Sciences, Russian Federation
local.identifier.pure21022089-
local.identifier.puree538f550-de64-4d93-8875-2404059acc81uuid
local.description.order012014-
local.identifier.eid2-s2.0-85101718585-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85101718585.pdf966,81 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.