Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102781
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Alam, M. J. | en |
dc.contributor.author | Eppstein, D. | en |
dc.contributor.author | Kaufmann, M. | en |
dc.contributor.author | Kobourov, S. G. | en |
dc.contributor.author | Pupyrev, S. | en |
dc.contributor.author | Schulz, A. | en |
dc.contributor.author | Ueckerdt, T. | en |
dc.date.accessioned | 2021-08-31T15:05:20Z | - |
dc.date.available | 2021-08-31T15:05:20Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Contact graphs of circular arcs / M. J. Alam, D. Eppstein, M. Kaufmann, et al. — DOI 10.1007/978-3-319-21840-3_1 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2015. — Vol. 9214. — P. 1-13. | en |
dc.identifier.isbn | 9783319218397 | - |
dc.identifier.issn | 3029743 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951855468&doi=10.1007%2f978-3-319-21840-3_1&partnerID=40&md5=cfba6bba7800b4c0c67f59cea1b1bbe5 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/102781 | - |
dc.description.abstract | We study representations of graphs by contacts of circular arcs, CCA-representations for short, where the vertices are interior-disjoint circular arcs in the plane and each edge is realized by an endpoint of one arc touching the interior of another. A graph is (2, k)-sparse if every s-vertex subgraph has at most 2s − k edges, and (2, k)-tight if in addition it has exactly 2n−k edges, where n is the number of vertices. Every graph with a CCA-representation is planar and (2, 0)-sparse, and it follows from known results that for k ≥ 3 every (2, k)-sparse graph has a CCA-representation. Hence the question of CCA-representability is open for (2, k)-sparse graphs with 0 ≤ k ≤ 2. We partially answer this question by computing CCArepresentations for several subclasses of planar (2, 0)-sparse graphs. Next, we study CCA-representations in which each arc has an empty convex hull. We show that every plane graph of maximum degree 4 has such a representation, but that finding such a representation for a plane (2, 0)-tight graph with maximum degree 5 is NP-complete. Finally, we describe a simple algorithm for representing plane (2, 0)-sparse graphs with wedges, where each vertex is represented with a sequence of two circular arcs (straight-line segments). © Springer International Publishing Switzerland 2015. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer Verlag | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Lect. Notes Comput. Sci. | 2 |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | ALGORITHMS | en |
dc.subject | DATA STRUCTURES | en |
dc.subject | GRAPHIC METHODS | en |
dc.subject | CONTACT GRAPHS | en |
dc.subject | MAXIMUM DEGREE | en |
dc.subject | PLANE GRAPHS | en |
dc.subject | REPRESENTABILITY | en |
dc.subject | REPRESENTATIONS OF GRAPHS | en |
dc.subject | SIMPLE ALGORITHM | en |
dc.subject | SPARSE GRAPHS | en |
dc.subject | STRAIGHT-LINE SEGMENTS | en |
dc.subject | GRAPH THEORY | en |
dc.title | Contact graphs of circular arcs | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1007/978-3-319-21840-3_1 | - |
dc.identifier.scopus | 84951855468 | - |
local.contributor.employee | Alam, M.J., Department of Computer Science, University of Arizona, Tucson, United States | |
local.contributor.employee | Eppstein, D., Computer Science Department, University of California, Irvine, United States | |
local.contributor.employee | Kaufmann, M., Wilhelm-Schickard-Institut Für Informatik, Universität Tübingen, Tübingen, Germany | |
local.contributor.employee | Kobourov, S.G., Department of Computer Science, University of Arizona, Tucson, United States | |
local.contributor.employee | Pupyrev, S., Department of Computer Science, University of Arizona, Tucson, United States, Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.employee | Schulz, A., Institut Math. Logik und Grundlagenforschung, Universität Münster, Münster, Germany | |
local.contributor.employee | Ueckerdt, T., Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany | |
local.description.firstpage | 1 | - |
local.description.lastpage | 13 | - |
local.volume | 9214 | - |
local.contributor.department | Department of Computer Science, University of Arizona, Tucson, United States | |
local.contributor.department | Computer Science Department, University of California, Irvine, United States | |
local.contributor.department | Wilhelm-Schickard-Institut Für Informatik, Universität Tübingen, Tübingen, Germany | |
local.contributor.department | Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.department | Institut Math. Logik und Grundlagenforschung, Universität Münster, Münster, Germany | |
local.contributor.department | Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany | |
local.identifier.pure | 568584 | - |
local.identifier.pure | 98c696c3-1132-4402-a4a4-9dd517deffb3 | uuid |
local.identifier.eid | 2-s2.0-84951855468 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84951855468.pdf | 410,42 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.