Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102767
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Alam, M. J. | en |
dc.contributor.author | Kobourov, S. G. | en |
dc.contributor.author | Pupyrev, S. | en |
dc.contributor.author | Toeniskoetter, J. | en |
dc.date.accessioned | 2021-08-31T15:05:18Z | - |
dc.date.available | 2021-08-31T15:05:18Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Weak unit disk and interval representation of graphs / M. J. Alam, S. G. Kobourov, S. Pupyrev, et al. — DOI 10.1007/978-3-662-53174-7_17 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2016. — Vol. 9224 LNCS. — P. 237-251. | en |
dc.identifier.isbn | 9783662531730 | - |
dc.identifier.issn | 3029743 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981523774&doi=10.1007%2f978-3-662-53174-7_17&partnerID=40&md5=f7c6da05c1276de97f1874f668a0fdaf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/102767 | - |
dc.description.abstract | We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edgepartition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line. © Springer International Publishing Switzerland 2016. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer Verlag | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Lect. Notes Comput. Sci. | 2 |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | GRAPHIC METHODS | en |
dc.subject | ADJACENT VERTICES | en |
dc.subject | INTERSECTION REPRESENTATIONS | en |
dc.subject | MAXIMUM AVERAGE DEGREE | en |
dc.subject | OUTERPLANAR GRAPH | en |
dc.subject | REPRESENTATION OF GRAPHS | en |
dc.subject | SERIES-PARALLEL GRAPH | en |
dc.subject | THRESHOLD GRAPHS | en |
dc.subject | UNIT INTERVALS | en |
dc.subject | GRAPH THEORY | en |
dc.title | Weak unit disk and interval representation of graphs | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1007/978-3-662-53174-7_17 | - |
dc.identifier.scopus | 84981523774 | - |
local.contributor.employee | Alam, M.J., Department of Computer Science, University of Arizona, Tucson, AZ, United States | |
local.contributor.employee | Kobourov, S.G., Department of Computer Science, University of Arizona, Tucson, AZ, United States | |
local.contributor.employee | Pupyrev, S., Department of Computer Science, University of Arizona, Tucson, AZ, United States, Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.employee | Toeniskoetter, J., Department of Computer Science, University of Arizona, Tucson, AZ, United States | |
local.description.firstpage | 237 | - |
local.description.lastpage | 251 | - |
local.volume | 9224 LNCS | - |
dc.identifier.wos | 000389704200017 | - |
local.contributor.department | Department of Computer Science, University of Arizona, Tucson, AZ, United States | |
local.contributor.department | Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation | |
local.identifier.pure | fa75325e-54cc-4b80-9503-b5d44967eaa3 | uuid |
local.identifier.pure | 1094541 | - |
local.identifier.eid | 2-s2.0-84981523774 | - |
local.identifier.wos | WOS:000389704200017 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-84981523774.pdf | 323,85 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.