Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102767
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlam, M. J.en
dc.contributor.authorKobourov, S. G.en
dc.contributor.authorPupyrev, S.en
dc.contributor.authorToeniskoetter, J.en
dc.date.accessioned2021-08-31T15:05:18Z-
dc.date.available2021-08-31T15:05:18Z-
dc.date.issued2016-
dc.identifier.citationWeak unit disk and interval representation of graphs / M. J. Alam, S. G. Kobourov, S. Pupyrev, et al. — DOI 10.1007/978-3-662-53174-7_17 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2016. — Vol. 9224 LNCS. — P. 237-251.en
dc.identifier.isbn9783662531730-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84981523774&doi=10.1007%2f978-3-662-53174-7_17&partnerID=40&md5=f7c6da05c1276de97f1874f668a0fdaf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102767-
dc.description.abstractWe study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edgepartition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line. © Springer International Publishing Switzerland 2016.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectGRAPHIC METHODSen
dc.subjectADJACENT VERTICESen
dc.subjectINTERSECTION REPRESENTATIONSen
dc.subjectMAXIMUM AVERAGE DEGREEen
dc.subjectOUTERPLANAR GRAPHen
dc.subjectREPRESENTATION OF GRAPHSen
dc.subjectSERIES-PARALLEL GRAPHen
dc.subjectTHRESHOLD GRAPHSen
dc.subjectUNIT INTERVALSen
dc.subjectGRAPH THEORYen
dc.titleWeak unit disk and interval representation of graphsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-662-53174-7_17-
dc.identifier.scopus84981523774-
local.contributor.employeeAlam, M.J., Department of Computer Science, University of Arizona, Tucson, AZ, United States
local.contributor.employeeKobourov, S.G., Department of Computer Science, University of Arizona, Tucson, AZ, United States
local.contributor.employeePupyrev, S., Department of Computer Science, University of Arizona, Tucson, AZ, United States, Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeToeniskoetter, J., Department of Computer Science, University of Arizona, Tucson, AZ, United States
local.description.firstpage237-
local.description.lastpage251-
local.volume9224 LNCS-
dc.identifier.wos000389704200017-
local.contributor.departmentDepartment of Computer Science, University of Arizona, Tucson, AZ, United States
local.contributor.departmentInstitute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation
local.identifier.purefa75325e-54cc-4b80-9503-b5d44967eaa3uuid
local.identifier.pure1094541-
local.identifier.eid2-s2.0-84981523774-
local.identifier.wosWOS:000389704200017-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84981523774.pdf323,85 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.