Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102739
Название: On a class of non-linear delay distributed order fractional diffusion equations
Авторы: Pimenov, V. G.
Hendy, A. S.
De Staelen, R. H.
Дата публикации: 2017
Издатель: Elsevier B.V.
Библиографическое описание: Pimenov V. G. On a class of non-linear delay distributed order fractional diffusion equations / V. G. Pimenov, A. S. Hendy, R. H. De Staelen. — DOI 10.1016/j.cam.2016.02.039 // Journal of Computational and Applied Mathematics. — 2017. — Vol. 318. — P. 433-443.
Аннотация: In this paper, we consider a numerical scheme for a class of non-linear time delay fractional diffusion equations with distributed order in time. This study covers the unique solvability, convergence and stability of the resulted numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(τ+(Δα)4+h4) in L∞-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results. © 2016 Elsevier B.V.
Ключевые слова: CONVERGENCE
DELAY PARTIAL DIFFERENTIAL EQUATIONS
DIFFERENCE SCHEME
DISCRETE ENERGY METHOD
DISTRIBUTED ORDER FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
STABILITY
NUMERICAL METHODS
PARTIAL DIFFERENTIAL EQUATIONS
TIME DELAY
CONVERGENCE
CONVERGENCE AND STABILITY
DIFFERENCE SCHEMES
DISCRETE ENERGIES
DISTRIBUTED-ORDER FRACTIONAL DIFFUSION EQUATIONS
FRACTIONAL DIFFUSION EQUATION
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS
NUMERICAL EXPERIMENTS
CONVERGENCE OF NUMERICAL METHODS
URI: http://elar.urfu.ru/handle/10995/102739
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 84960540384
Идентификатор WOS: 000394067700041
Идентификатор PURE: 732083c2-64f9-4f8d-a9cf-4056ed5ee3df
1480036
ISSN: 3770427
DOI: 10.1016/j.cam.2016.02.039
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84960540384.pdf455,13 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.