Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102739
Title: | On a class of non-linear delay distributed order fractional diffusion equations |
Authors: | Pimenov, V. G. Hendy, A. S. De Staelen, R. H. |
Issue Date: | 2017 |
Publisher: | Elsevier B.V. |
Citation: | Pimenov V. G. On a class of non-linear delay distributed order fractional diffusion equations / V. G. Pimenov, A. S. Hendy, R. H. De Staelen. — DOI 10.1016/j.cam.2016.02.039 // Journal of Computational and Applied Mathematics. — 2017. — Vol. 318. — P. 433-443. |
Abstract: | In this paper, we consider a numerical scheme for a class of non-linear time delay fractional diffusion equations with distributed order in time. This study covers the unique solvability, convergence and stability of the resulted numerical solution by means of the discrete energy method. The derivation of a linearized difference scheme with convergence order O(τ+(Δα)4+h4) in L∞-norm is the main purpose of this study. Numerical experiments are carried out to support the obtained theoretical results. © 2016 Elsevier B.V. |
Keywords: | CONVERGENCE DELAY PARTIAL DIFFERENTIAL EQUATIONS DIFFERENCE SCHEME DISCRETE ENERGY METHOD DISTRIBUTED ORDER FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS STABILITY NUMERICAL METHODS PARTIAL DIFFERENTIAL EQUATIONS TIME DELAY CONVERGENCE CONVERGENCE AND STABILITY DIFFERENCE SCHEMES DISCRETE ENERGIES DISTRIBUTED-ORDER FRACTIONAL DIFFUSION EQUATIONS FRACTIONAL DIFFUSION EQUATION FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS NUMERICAL EXPERIMENTS CONVERGENCE OF NUMERICAL METHODS |
URI: | http://elar.urfu.ru/handle/10995/102739 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 84960540384 |
WOS ID: | 000394067700041 |
PURE ID: | 732083c2-64f9-4f8d-a9cf-4056ed5ee3df 1480036 |
ISSN: | 3770427 |
DOI: | 10.1016/j.cam.2016.02.039 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84960540384.pdf | 455,13 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.