Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102735
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGlazyrina, P. Y.en
dc.contributor.authorRévész, S. G.en
dc.date.accessioned2021-08-31T15:05:09Z-
dc.date.available2021-08-31T15:05:09Z-
dc.date.issued2017-
dc.identifier.citationGlazyrina P. Y. Turán type converse Markov inequalities in Lq on a generalized Erőd class of convex domains / P. Y. Glazyrina, S. G. Révész. — DOI 10.1016/j.jat.2017.05.004 // Journal of Approximation Theory. — 2017. — Vol. 221. — P. 62-76.en
dc.identifier.issn219045-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85033386473&doi=10.1016%2fj.jat.2017.05.004&partnerID=40&md5=6efb9d90e72ca2a9245b88d88d7387e3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102735-
dc.description.abstractP. Turán was the first to derive lower estimations on the uniform norm of the derivatives of polynomials p of uniform norm 1 on the disk D:={z∈C:|z|≤1} and the interval I:=[−1,1], under the normalization condition that the zeros of the polynomial p in question all lie in D or I, resp. Namely, in 1939 he proved that with n:=degp tending to infinity, the precise growth order of the minimal possible derivative norm is n for D and n for I. Already the same year J. Erőd considered the problem on other domains. In his most general formulation, he extended Turán's order n result on D to a certain general class of piecewise smooth convex domains. Finally, a decade ago the growth order of the minimal possible norm of the derivative was proved to be n for all compact convex domains. Turán himself gave comments about the above oscillation question in Lq norm on D. Nevertheless, till recently results were known only for D, I and so-called R-circular domains. Continuing our recent work, also here we investigate the Turán-Erőd problem on general classes of domains. © 2017 Elsevier Inc.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAcademic Press Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ. Approx. Theory2
dc.sourceJournal of Approximation Theoryen
dc.subjectBERNSTEIN–MARKOV INEQUALITIESen
dc.subjectBLASCHKE ROLLING BALL THEOREMSen
dc.subjectCAPACITYen
dc.subjectCHEBYSHEV CONSTANTen
dc.subjectCONVEX DOMAINSen
dc.subjectERŐD DOMAINen
dc.subjectGABRIEL LEMMAen
dc.subjectLOGARITHMIC DERIVATIVEen
dc.subjectOUTER ANGLEen
dc.subjectTRANSFINITE DIAMETERen
dc.subjectTURÁN'S LOWER ESTIMATE OF DERIVATIVE NORMen
dc.titleTurán type converse Markov inequalities in Lq on a generalized Erőd class of convex domainsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.jat.2017.05.004-
dc.identifier.scopus85033386473-
local.contributor.employeeGlazyrina, P.Y., Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, pr. Lenina 51620000, Russian Federation, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences Yekaterinburg, ul. S. Kovalevskoi 16620990, Russian Federation
local.contributor.employeeRévész, S.G., Institute of Mathematics, Faculty of Sciences, University of Pécs, Pécs, Vasvári Pál utca 47622, Hungary, A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Reáltanoda utca 13-151053, Hungary
local.description.firstpage62-
local.description.lastpage76-
local.volume221-
dc.identifier.wos000408181000004-
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, pr. Lenina 51620000, Russian Federation
local.contributor.departmentInstitute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences Yekaterinburg, ul. S. Kovalevskoi 16620990, Russian Federation
local.contributor.departmentInstitute of Mathematics, Faculty of Sciences, University of Pécs, Pécs, Vasvári Pál utca 47622, Hungary
local.contributor.departmentA. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Reáltanoda utca 13-151053, Hungary
local.identifier.pure2039454-
local.identifier.eid2-s2.0-85033386473-
local.identifier.wosWOS:000408181000004-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85033386473.pdf258,44 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.