Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102735
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Glazyrina, P. Y. | en |
dc.contributor.author | Révész, S. G. | en |
dc.date.accessioned | 2021-08-31T15:05:09Z | - |
dc.date.available | 2021-08-31T15:05:09Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Glazyrina P. Y. Turán type converse Markov inequalities in Lq on a generalized Erőd class of convex domains / P. Y. Glazyrina, S. G. Révész. — DOI 10.1016/j.jat.2017.05.004 // Journal of Approximation Theory. — 2017. — Vol. 221. — P. 62-76. | en |
dc.identifier.issn | 219045 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033386473&doi=10.1016%2fj.jat.2017.05.004&partnerID=40&md5=6efb9d90e72ca2a9245b88d88d7387e3 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/102735 | - |
dc.description.abstract | P. Turán was the first to derive lower estimations on the uniform norm of the derivatives of polynomials p of uniform norm 1 on the disk D:={z∈C:|z|≤1} and the interval I:=[−1,1], under the normalization condition that the zeros of the polynomial p in question all lie in D or I, resp. Namely, in 1939 he proved that with n:=degp tending to infinity, the precise growth order of the minimal possible derivative norm is n for D and n for I. Already the same year J. Erőd considered the problem on other domains. In his most general formulation, he extended Turán's order n result on D to a certain general class of piecewise smooth convex domains. Finally, a decade ago the growth order of the minimal possible norm of the derivative was proved to be n for all compact convex domains. Turán himself gave comments about the above oscillation question in Lq norm on D. Nevertheless, till recently results were known only for D, I and so-called R-circular domains. Continuing our recent work, also here we investigate the Turán-Erőd problem on general classes of domains. © 2017 Elsevier Inc. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Academic Press Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | J. Approx. Theory | 2 |
dc.source | Journal of Approximation Theory | en |
dc.subject | BERNSTEIN–MARKOV INEQUALITIES | en |
dc.subject | BLASCHKE ROLLING BALL THEOREMS | en |
dc.subject | CAPACITY | en |
dc.subject | CHEBYSHEV CONSTANT | en |
dc.subject | CONVEX DOMAINS | en |
dc.subject | ERŐD DOMAIN | en |
dc.subject | GABRIEL LEMMA | en |
dc.subject | LOGARITHMIC DERIVATIVE | en |
dc.subject | OUTER ANGLE | en |
dc.subject | TRANSFINITE DIAMETER | en |
dc.subject | TURÁN'S LOWER ESTIMATE OF DERIVATIVE NORM | en |
dc.title | Turán type converse Markov inequalities in Lq on a generalized Erőd class of convex domains | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.jat.2017.05.004 | - |
dc.identifier.scopus | 85033386473 | - |
local.contributor.employee | Glazyrina, P.Y., Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, pr. Lenina 51620000, Russian Federation, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences Yekaterinburg, ul. S. Kovalevskoi 16620990, Russian Federation | |
local.contributor.employee | Révész, S.G., Institute of Mathematics, Faculty of Sciences, University of Pécs, Pécs, Vasvári Pál utca 47622, Hungary, A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Reáltanoda utca 13-151053, Hungary | |
local.description.firstpage | 62 | - |
local.description.lastpage | 76 | - |
local.volume | 221 | - |
dc.identifier.wos | 000408181000004 | - |
local.contributor.department | Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, pr. Lenina 51620000, Russian Federation | |
local.contributor.department | Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences Yekaterinburg, ul. S. Kovalevskoi 16620990, Russian Federation | |
local.contributor.department | Institute of Mathematics, Faculty of Sciences, University of Pécs, Pécs, Vasvári Pál utca 47622, Hungary | |
local.contributor.department | A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Reáltanoda utca 13-151053, Hungary | |
local.identifier.pure | 2039454 | - |
local.identifier.eid | 2-s2.0-85033386473 | - |
local.identifier.wos | WOS:000408181000004 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85033386473.pdf | 258,44 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.