Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102733
Название: | Primitive sets of nonnegative matrices and synchronizing automata |
Авторы: | Gerencsér, B. Gusev, V. V. Jungers, R. M. |
Дата публикации: | 2018 |
Издатель: | Society for Industrial and Applied Mathematics Publications |
Библиографическое описание: | Gerencsér B. Primitive sets of nonnegative matrices and synchronizing automata / B. Gerencsér, V. V. Gusev, R. M. Jungers. — DOI 10.1137/16M1094099 // SIAM Journal on Matrix Analysis and Applications. — 2018. — Vol. 39. — Iss. 1. — P. 83-98. |
Аннотация: | A set of nonnegative matrices M = {M1, M2,⋯, Mk} is called primitive if there exist possibly equal indices i1,i2,⋯, im such that Mi1 Mi2 ··· Mim is entrywise positive. The length of the shortest such product is called the exponent of M. Recently, connections between synchronizing automata and primitive sets of matrices were established. In the present paper, we strengthen these links by providing equivalence results, both in terms of combinatorial characterization and computational complexity. We pay special attention to the set of matrices without zero rows and columns, denoted by NZ, due to its intriguing connections to the Černý conjecture. We rely on synchronizing automata theory to derive a number of results about primitive sets of matrices. Making use of an asymptotic estimate by Rystsov [Cybernetics, 16 (1980), pp. 194-198], we show that the maximal exponent exp(n) of primitive sets of n×n matrices satisfy limn→∞ log exp(n)/n= log 3/3 and that the problem of deciding whether a given set of matrices is primitive is PSPACE-complete, even in the case of two matrices. Furthermore, we characterize the computational complexity of different problems related to the exponent of NZ matrix sets and present a bound of 2n2 - 5n + 5 on the exponent when considering the subclass of matrices having total support. © 2018 Society for Industrial and Applied Mathematics. |
Ключевые слова: | CAREFULLY SYNCHRONIZING AUTOMATA NONNEGATIVE MATRICES PRIMITIVE SETS OF MATRICES THE CERNY CONJECTURE THE EXPONENT OF A MATRIX SET COMPUTATIONAL COMPLEXITY MATRIX ALGEBRA SYNCHRONIZATION ASYMPTOTIC ESTIMATES NON-NEGATIVE MATRIX PSPACE-COMPLETE SYNCHRONIZING AUTOMATA THE CERNY CONJECTURE THE EXPONENT OF A MATRIX SET AUTOMATA THEORY |
URI: | http://elar.urfu.ru/handle/10995/102733 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 35520313 |
Идентификатор SCOPUS: | 85045763222 |
Идентификатор WOS: | 000428949900004 |
Идентификатор PURE: | c8e5be49-7dc9-4320-9600-0d48ee103996 7140259 |
ISSN: | 8954798 |
DOI: | 10.1137/16M1094099 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85045763222.pdf | 584,45 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.