Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102698
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLiu, G.en
dc.contributor.authorLiu, G. -J.en
dc.contributor.authorTan, J. -X.en
dc.contributor.authorLin, H.en
dc.date.accessioned2021-08-31T15:04:58Z-
dc.date.available2021-08-31T15:04:58Z-
dc.date.issued2019-
dc.identifier.citationDNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regions / G. Liu, G. -J. Liu, J. -X. Tan, et al. — DOI 10.1016/j.ygeno.2018.07.013 // Genomics. — 2019. — Vol. 111. — Iss. 5. — P. 1167-1175.en
dc.identifier.issn8887543-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85050507489&doi=10.1016%2fj.ygeno.2018.07.013&partnerID=40&md5=fd569e3d5ad36dffef7da7ac0fe040fa
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102698-
dc.description.abstractThe nucleosome is the fundamental structural unit of eukaryotic chromatin and plays an essential role in the epigenetic regulation of cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to identify nucleosome positions in the genome. Our previous model based on DNA deformation energy, in which a set of DNA physical descriptors was used, performed well in predicting nucleosome dyad positions and occupancy. In this study, we established a machine-learning model for predicting nucleosome occupancy in order to further verify the physical descriptors. Results showed that (1) our model outperformed several other sequence compositional information-based models, indicating a stronger dependence of nucleosome positioning on DNA physical properties; (2) nucleosome-enriched and -depleted regions have distinct features in terms of DNA physical descriptors like sequence-dependent flexibility and equilibrium structure parameters; (3) gene transcription start sites and termination sites can be well characterized with the distribution patterns of the physical descriptors, indicating the regulatory role of DNA physical properties in gene transcription. In addition, we developed a web server for the model, which is freely accessible at http://lin-group.cn/server/iNuc-force/. © 2018 Elsevier Inc.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAcademic Press Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceGenomics2
dc.sourceGenomicsen
dc.subjectFLEXIBILITYen
dc.subjectFORCE CONSTANTen
dc.subjectNUCLEOSOME OCCUPANCYen
dc.subjectPHYSICAL DESCRIPTORen
dc.subjectARTICLEen
dc.subjectGENE EXPRESSIONen
dc.subjectMACHINE LEARNINGen
dc.subjectNUCLEOSOMEen
dc.subjectTRANSCRIPTION INITIATION SITEen
dc.subjectANIMALen
dc.subjectCHEMISTRYen
dc.subjectCHROMATIN ASSEMBLY AND DISASSEMBLYen
dc.subjectDNA SEQUENCEen
dc.subjectGENETICSen
dc.subjectHUMANen
dc.subjectNUCLEOSOMEen
dc.subjectPROCEDURESen
dc.subjectSOFTWAREen
dc.subjectDNAen
dc.subjectANIMALSen
dc.subjectCHROMATIN ASSEMBLY AND DISASSEMBLYen
dc.subjectDNAen
dc.subjectHUMANSen
dc.subjectMACHINE LEARNINGen
dc.subjectNUCLEOSOMESen
dc.subjectSEQUENCE ANALYSIS, DNAen
dc.subjectSOFTWAREen
dc.titleDNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ygeno.2018.07.013-
dc.identifier.scopus85050507489-
local.contributor.employeeLiu, G., The School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
local.contributor.employeeLiu, G.-J., School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeTan, J.-X., Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
local.contributor.employeeLin, H., Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
local.description.firstpage1167-
local.description.lastpage1175-
local.issue5-
local.volume111-
dc.identifier.wos000485764600020-
local.contributor.departmentThe School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
local.contributor.departmentCenter for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
local.contributor.departmentSchool of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.identifier.pured21ee404-a28b-40ae-9143-85b354b366c1uuid
local.identifier.pure10771948-
local.identifier.eid2-s2.0-85050507489-
local.identifier.wosWOS:000485764600020-
local.identifier.pmid30055231-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85050507489.pdf1,97 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.