Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102690
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorChentsov, A. G.en
dc.contributor.authorChentsov, P. A.en
dc.date.accessioned2021-08-31T15:04:55Z-
dc.date.available2021-08-31T15:04:55Z-
dc.date.issued2020-
dc.identifier.citationChentsov A. G. To the question of optimization of the starting point in the routing problem with restrictions / A. G. Chentsov, P. A. Chentsov. — DOI 10.35634/2226-3594-2020-55-09 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 55. — P. 135-154.en
dc.identifier.issn22263594-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85093889670&doi=10.35634%2f2226-3594-2020-55-09&partnerID=40&md5=71b13b2f4d25f79956a2e730a13543de
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102690-
dc.description.abstractWe consider the extreme routing problem with an additive criterion, the terminal component of which depends on the starting point. This dependence may be associated, in particular, with the requirement to return to the starting point region after completing the final system of tasks that need to be ordered. The work assumes that the tasks to be performed are related with visiting non-empty finite sets called megacities. In turn, the mentioned visits are associated with the performance of works, the costs of which are involved in the formation of the criterion. Finally, the costs of external movements (between megacities) supplement the formation of an additive criterion to be minimized. It is required to find a global extremum and a solution that includes a starting point, the order of visits to megacities and a specific trajectory of the process. The solution uses widely understood dynamic programming (DP). It is significant that procedures based on DP use starting point. Therefore, enumeration of mentioned points is required. The article proposes an approach to solving the problem of reducing this enumeration through the use of auxiliary DP that are universal with respect to the choice of a starting point. The optimal algorithm was built and implemented on a PC using the aforementioned approach. © Solid State Technology.All rights reserved.en
dc.description.sponsorshipThis work was supported by RFBF, grant no. 18–07–00637.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectDYNAMIC PROGRAMMINGen
dc.subjectPRECEDENCE CONDITIONSen
dc.subjectROUTEen
dc.titleTo the question of optimization of the starting point in the routing problem with restrictionsen
dc.titleК вопросу об оптимизации точки старта в задаче маршрутизации с ограничениямиru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi42949305-
dc.identifier.doi10.35634/2226-3594-2020-55-09-
dc.identifier.scopus85093889670-
local.contributor.employeeChentsov, A.G., Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation, Ural Federal University, Ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeChentsov, P.A., Ural Federal University, Ul. Mira, 19, Yekaterinburg, 620002, Russian Federation, Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation
local.description.firstpage135-
local.description.lastpage154-
local.volume55-
dc.identifier.wos000547994700009-
local.contributor.departmentInstitute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation
local.contributor.departmentUral Federal University, Ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.contributor.departmentInstitute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation
local.identifier.pure13200321-
local.identifier.eid2-s2.0-85093889670-
local.fund.rffi18-07-00637-
local.identifier.wosWOS:000547994700009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85093889670.pdf640,15 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.