Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102688
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLebedev, P. D.en
dc.contributor.authorUspenskii, A. A.en
dc.date.accessioned2021-08-31T15:04:47Z-
dc.date.available2021-08-31T15:04:47Z-
dc.date.issued2020-
dc.identifier.citationLebedev P. D. Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature / P. D. Lebedev, A. A. Uspenskii. — DOI 10.35634/2226-3594-2020-55-07 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 55. — P. 93-112.en
dc.identifier.issn22263594-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85093905071&doi=10.35634%2f2226-3594-2020-55-07&partnerID=40&md5=ed704c0400cc6b16e4313a6b22c20b30
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102688-
dc.description.abstractWe consider a time-optimal control problem on the plane with a circular vectogram of velocities and a non-convex target set with a boundary having a finite number of points of discontinuity of curvature. We study the problem of identifying and constructing scattering curves that form a singular set of the optimal result function in the case when the points of discontinuity of curvature have one-sided curvatures of different signs. It is shown that these points belong to pseudo-vertices that are characteristic points of the boundary of the target set, which are responsible for the generation of branches of a singular set. The structure of scattering curves and the optimal trajectories starting from them, which fall in the neighborhood of the pseudo-vertex, is investigated. A characteristic feature of the case under study is revealed, consisting in the fact that one pseudo-vertex can generate two different branches of a singular set. The equation of the tangent to the smoothness points of the scattering curve is derived. A scheme is proposed for constructing a singular set, based on the construction of integral curves for first-order differential equations in normal form, the right-hand sides of which are determined by the geometry of the boundary of the target in neighborhoods of the pseudo-vertices. The results obtained are illustrated by the example of solving the control problem when the target set is a one-dimensional manifold. © 2020 Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. All rights reserved.en
dc.description.sponsorshipThis work was funded by the Russian Foundation for Basic Research (Theorems 3.1 and 3.3 were proved by P. D. Lebedev with the support of the project no. 18–01–00221; Theorem 3.2 was proved by A. A. Uspenskii with the support of the project no. 18–01–00264).en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectCURVATUREen
dc.subjectDISPERSING LINEen
dc.subjectHAMILTON–JACOBI EQUATIONen
dc.subjectPSEUDO VERTEXen
dc.subjectSINGULAR SETen
dc.subjectTANGENTen
dc.subjectTIME-OPTIMAL PROBLEMen
dc.titleConstruction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvatureen
dc.titleПостроение рассеивающих кривых в одном классе задач быстродействия при скачках кривизны границы целевого множестваru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi42949303-
dc.identifier.doi10.35634/2226-3594-2020-55-07-
dc.identifier.scopus85093905071-
local.contributor.employeeLebedev, P.D., Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation, Ural Federal University, Ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeUspenskii, A.A., Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation
local.description.firstpage93-
local.description.lastpage112-
local.volume55-
dc.identifier.wos000547994700007-
local.contributor.departmentInstitute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation
local.contributor.departmentUral Federal University, Ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.contributor.departmentInstitute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ul. S. Kovalevskoi, 16, Yekaterinburg, 620219, Russian Federation
local.identifier.pure13405132-
local.identifier.eid2-s2.0-85093905071-
local.fund.rffi18-01-00221-
local.fund.rffi18-01-00264-
local.identifier.wosWOS:000547994700007-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85093905071.pdf509,69 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.