Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102492
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFink, M.en
dc.contributor.authorPupyrev, S.en
dc.date.accessioned2021-08-31T15:03:52Z-
dc.date.available2021-08-31T15:03:52Z-
dc.date.issued2013-
dc.identifier.citationFink M. Metro-line crossing minimization: Hardness, approximations, and tractable cases / M. Fink, S. Pupyrev. — DOI 10.1007/978-3-319-03841-4_29 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2013. — Vol. 8242 LNCS. — P. 328-339.en
dc.identifier.isbn9783319038407-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84891859685&doi=10.1007%2f978-3-319-03841-4_29&partnerID=40&md5=ac5a7ebbe91f2e7eff095781f650222f
dc.identifier.otherhttps://link.springer.com/content/pdf/10.1007%2F978-3-319-03841-4_29.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102492-
dc.description.abstractCrossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minimized. So far, the complexity of MLCM has been an open problem. In contrast, the problem variant in which line ends must be placed in outermost position on their edges (MLCM-P) is known to be NP-hard. Our main results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We give an O(√log |L|)-approximation algorithm for MLCM-P. © 2013 Springer International Publishing Switzerland.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectAPPROXIMATION ALGORITHMSen
dc.subjectDRAWING (GRAPHICS)en
dc.subjectNP-HARDen
dc.subjectCENTRAL PROBLEMSen
dc.subjectCROSSING MINIMIZATIONen
dc.subjectEMBEDDED GRAPHSen
dc.subjectGRAPH DRAWINGen
dc.subjectLINE ENDSen
dc.subjectMETRO LINESen
dc.subjectGRAPH THEORYen
dc.titleMetro-line crossing minimization: Hardness, approximations, and tractable casesen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-319-03841-4_29-
dc.identifier.scopus84891859685-
local.contributor.employeeFink, M., Lehrstuhl für Informatik I, Universität Würzburg, Germany
local.contributor.employeePupyrev, S., Department of Computer Science, University of Arizona, United States, Institute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.description.firstpage328-
local.description.lastpage339-
local.volume8242 LNCS-
local.contributor.departmentLehrstuhl für Informatik I, Universität Würzburg, Germany
local.contributor.departmentDepartment of Computer Science, University of Arizona, United States
local.contributor.departmentInstitute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.identifier.pure841916-
local.identifier.puread295525-392a-43ac-bb83-439705232531uuid
local.identifier.eid2-s2.0-84891859685-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84891859685.pdf359,91 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.