Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102449
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlam, Md. J.en
dc.contributor.authorKobourov, S. G.en
dc.contributor.authorPupyrev, S.en
dc.contributor.authorToeniskoetter, J.en
dc.date.accessioned2021-08-31T15:03:40Z-
dc.date.available2021-08-31T15:03:40Z-
dc.date.issued2014-
dc.identifier.citationHappy edges: Threshold-coloring of regular lattices / Md. J. Alam, S. G. Kobourov, S. Pupyrev, et al. — DOI 10.1007/978-3-319-07890-8_3 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2014. — Vol. 8496 LNCS. — P. 28-39.en
dc.identifier.isbn9783319078892-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84903746702&doi=10.1007%2f978-3-319-07890-8_3&partnerID=40&md5=1119b2318c076d84b434a30a4d7065b7
dc.identifier.otherhttp://arxiv.org/pdf/1306.2053m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102449-
dc.description.abstractWe study a graph coloring problem motivated by a fun Sudoku-style puzzle. Given a bipartition of the edges of a graph into near and far sets and an integer threshold t, a threshold-coloring of the graph is an assignment of integers to the vertices so that endpoints of near edges differ by t or less, while endpoints of far edges differ by more than t. We study threshold-coloring of tilings of the plane by regular polygons, known as Archimedean lattices, and their duals, the Laves lattices. We prove that some are threshold-colorable with constant number of colors for any edge labeling, some require an unbounded number of colors for specific labelings, and some are not threshold-colorable. © 2014 Springer International Publishing.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectARTIFICIAL INTELLIGENCEen
dc.subjectCOMPUTER SCIENCEen
dc.subjectCOMPUTERSen
dc.subjectBIPARTITIONen
dc.subjectEDGE LABELINGen
dc.subjectGRAPH COLORING PROBLEMen
dc.subjectLABELINGSen
dc.subjectREGULAR LATTICEen
dc.subjectREGULAR POLYGONen
dc.subjectGRAPH THEORYen
dc.titleHappy edges: Threshold-coloring of regular latticesen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-319-07890-8_3-
dc.identifier.scopus84903746702-
local.contributor.employeeAlam, Md.J., Department of Computer Science, University of Arizona, United States
local.contributor.employeeKobourov, S.G., Department of Computer Science, University of Arizona, United States
local.contributor.employeePupyrev, S., Department of Computer Science, University of Arizona, United States, Institute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.contributor.employeeToeniskoetter, J., Department of Computer Science, University of Arizona, United States
local.description.firstpage28-
local.description.lastpage39-
local.volume8496 LNCS-
local.contributor.departmentDepartment of Computer Science, University of Arizona, United States
local.contributor.departmentInstitute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.identifier.pure370555-
local.identifier.pure39ac752f-d301-4c07-8bfc-28486af6164auuid
local.identifier.eid2-s2.0-84903746702-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84903746702.pdf1,17 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.